Irrational numbers to irrational powers being rational?












0












$begingroup$


So some of you may be familiar with the proof that some irrational numbers to irrational powers are rational, that is: if $A = sqrt2^sqrt{2}$ then it follows that $A^sqrt{2} = 2$. So, I've found a fun brain teaser, so to speak, for people (probably everyone on here) who like this type of math problem.




Given an irrational number $q$, find the set of all
irrational numbers $p$ such that: $q^p$ is rational.




The solution that I found is the set of all $p = log_q(x):xin Q $ where Q is the field of rational numbers. The example I gave at first does satisfy this. As you can see, this problem will be more fun for the presenter than the solver since it's such an annoyingly simple solution, which is why I wanted to ask if there is an example that falls outside of the solution set that I gave for some bizarre reason, and would I need a more rigorous proof that no solution can fall outside the set? I mean all I really did was set $q^p = x$, say x was rational, and solver for p in terms of q.










share|cite|improve this question











$endgroup$








  • 8




    $begingroup$
    Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
    $endgroup$
    – Git Gud
    Mar 22 '15 at 2:07










  • $begingroup$
    Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
    $endgroup$
    – William Stagner
    Mar 22 '15 at 2:33










  • $begingroup$
    Related: For which $x$ is $e^x$ rational? Transcendental?
    $endgroup$
    – barto
    Aug 17 '15 at 14:59










  • $begingroup$
    You should mention $q ne 1$
    $endgroup$
    – harshit54
    Jan 3 at 9:58
















0












$begingroup$


So some of you may be familiar with the proof that some irrational numbers to irrational powers are rational, that is: if $A = sqrt2^sqrt{2}$ then it follows that $A^sqrt{2} = 2$. So, I've found a fun brain teaser, so to speak, for people (probably everyone on here) who like this type of math problem.




Given an irrational number $q$, find the set of all
irrational numbers $p$ such that: $q^p$ is rational.




The solution that I found is the set of all $p = log_q(x):xin Q $ where Q is the field of rational numbers. The example I gave at first does satisfy this. As you can see, this problem will be more fun for the presenter than the solver since it's such an annoyingly simple solution, which is why I wanted to ask if there is an example that falls outside of the solution set that I gave for some bizarre reason, and would I need a more rigorous proof that no solution can fall outside the set? I mean all I really did was set $q^p = x$, say x was rational, and solver for p in terms of q.










share|cite|improve this question











$endgroup$








  • 8




    $begingroup$
    Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
    $endgroup$
    – Git Gud
    Mar 22 '15 at 2:07










  • $begingroup$
    Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
    $endgroup$
    – William Stagner
    Mar 22 '15 at 2:33










  • $begingroup$
    Related: For which $x$ is $e^x$ rational? Transcendental?
    $endgroup$
    – barto
    Aug 17 '15 at 14:59










  • $begingroup$
    You should mention $q ne 1$
    $endgroup$
    – harshit54
    Jan 3 at 9:58














0












0








0





$begingroup$


So some of you may be familiar with the proof that some irrational numbers to irrational powers are rational, that is: if $A = sqrt2^sqrt{2}$ then it follows that $A^sqrt{2} = 2$. So, I've found a fun brain teaser, so to speak, for people (probably everyone on here) who like this type of math problem.




Given an irrational number $q$, find the set of all
irrational numbers $p$ such that: $q^p$ is rational.




The solution that I found is the set of all $p = log_q(x):xin Q $ where Q is the field of rational numbers. The example I gave at first does satisfy this. As you can see, this problem will be more fun for the presenter than the solver since it's such an annoyingly simple solution, which is why I wanted to ask if there is an example that falls outside of the solution set that I gave for some bizarre reason, and would I need a more rigorous proof that no solution can fall outside the set? I mean all I really did was set $q^p = x$, say x was rational, and solver for p in terms of q.










share|cite|improve this question











$endgroup$




So some of you may be familiar with the proof that some irrational numbers to irrational powers are rational, that is: if $A = sqrt2^sqrt{2}$ then it follows that $A^sqrt{2} = 2$. So, I've found a fun brain teaser, so to speak, for people (probably everyone on here) who like this type of math problem.




Given an irrational number $q$, find the set of all
irrational numbers $p$ such that: $q^p$ is rational.




The solution that I found is the set of all $p = log_q(x):xin Q $ where Q is the field of rational numbers. The example I gave at first does satisfy this. As you can see, this problem will be more fun for the presenter than the solver since it's such an annoyingly simple solution, which is why I wanted to ask if there is an example that falls outside of the solution set that I gave for some bizarre reason, and would I need a more rigorous proof that no solution can fall outside the set? I mean all I really did was set $q^p = x$, say x was rational, and solver for p in terms of q.







number-theory logarithms exponentiation rationality-testing






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 9:52









Klangen

1,70111334




1,70111334










asked Mar 22 '15 at 2:04









Eben CowleyEben Cowley

32718




32718








  • 8




    $begingroup$
    Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
    $endgroup$
    – Git Gud
    Mar 22 '15 at 2:07










  • $begingroup$
    Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
    $endgroup$
    – William Stagner
    Mar 22 '15 at 2:33










  • $begingroup$
    Related: For which $x$ is $e^x$ rational? Transcendental?
    $endgroup$
    – barto
    Aug 17 '15 at 14:59










  • $begingroup$
    You should mention $q ne 1$
    $endgroup$
    – harshit54
    Jan 3 at 9:58














  • 8




    $begingroup$
    Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
    $endgroup$
    – Git Gud
    Mar 22 '15 at 2:07










  • $begingroup$
    Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
    $endgroup$
    – William Stagner
    Mar 22 '15 at 2:33










  • $begingroup$
    Related: For which $x$ is $e^x$ rational? Transcendental?
    $endgroup$
    – barto
    Aug 17 '15 at 14:59










  • $begingroup$
    You should mention $q ne 1$
    $endgroup$
    – harshit54
    Jan 3 at 9:58








8




8




$begingroup$
Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
$endgroup$
– Git Gud
Mar 22 '15 at 2:07




$begingroup$
Your proposed solution pretty much says "the set of solutions is the set of solutions". It isn't humanly (I think) more comprehensible to find $log_q(x)$ than the initial problem.
$endgroup$
– Git Gud
Mar 22 '15 at 2:07












$begingroup$
Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
$endgroup$
– William Stagner
Mar 22 '15 at 2:33




$begingroup$
Given that we don't even know if $e^e$ is rational, I think anybody trying to solve your problem in general is going to have a sad time.
$endgroup$
– William Stagner
Mar 22 '15 at 2:33












$begingroup$
Related: For which $x$ is $e^x$ rational? Transcendental?
$endgroup$
– barto
Aug 17 '15 at 14:59




$begingroup$
Related: For which $x$ is $e^x$ rational? Transcendental?
$endgroup$
– barto
Aug 17 '15 at 14:59












$begingroup$
You should mention $q ne 1$
$endgroup$
– harshit54
Jan 3 at 9:58




$begingroup$
You should mention $q ne 1$
$endgroup$
– harshit54
Jan 3 at 9:58










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1200435%2firrational-numbers-to-irrational-powers-being-rational%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1200435%2firrational-numbers-to-irrational-powers-being-rational%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]