Evaluating $int frac{x^n}{y}dx$ using reduction formula
$begingroup$
If $y^2=3x^2+2x+1$ and integration $I_n$ is defined as $I_n= int frac{x^n}{y}dx$, where $AI_{10}+BI_{9}+CI_{8}=x^9y$, then find the values of $A,B,C$.
I did generate the reduction formula but I am not getting any kind of given relation between the three integrations. I think my reduction formula approach is not good. How should I apply Integration by parts for reduction and how do I simplify after that. Thanks.
calculus integration reduction-formula
$endgroup$
add a comment |
$begingroup$
If $y^2=3x^2+2x+1$ and integration $I_n$ is defined as $I_n= int frac{x^n}{y}dx$, where $AI_{10}+BI_{9}+CI_{8}=x^9y$, then find the values of $A,B,C$.
I did generate the reduction formula but I am not getting any kind of given relation between the three integrations. I think my reduction formula approach is not good. How should I apply Integration by parts for reduction and how do I simplify after that. Thanks.
calculus integration reduction-formula
$endgroup$
add a comment |
$begingroup$
If $y^2=3x^2+2x+1$ and integration $I_n$ is defined as $I_n= int frac{x^n}{y}dx$, where $AI_{10}+BI_{9}+CI_{8}=x^9y$, then find the values of $A,B,C$.
I did generate the reduction formula but I am not getting any kind of given relation between the three integrations. I think my reduction formula approach is not good. How should I apply Integration by parts for reduction and how do I simplify after that. Thanks.
calculus integration reduction-formula
$endgroup$
If $y^2=3x^2+2x+1$ and integration $I_n$ is defined as $I_n= int frac{x^n}{y}dx$, where $AI_{10}+BI_{9}+CI_{8}=x^9y$, then find the values of $A,B,C$.
I did generate the reduction formula but I am not getting any kind of given relation between the three integrations. I think my reduction formula approach is not good. How should I apply Integration by parts for reduction and how do I simplify after that. Thanks.
calculus integration reduction-formula
calculus integration reduction-formula
edited Jan 6 at 5:44


clathratus
3,740333
3,740333
asked May 16 '16 at 13:46
user167045
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$(x^n y)'=n x^{n-1}y+x^n y'$ with $y=frac{3x^2+2x+1}{y}$ and $y'=frac{3x+1}{y}$.
$I_n'=frac{x^n}{y}$
=> $Afrac{x^{10}}{y}+Bfrac{x^9}{y}+Cfrac{x^8}{y}=
9 x^8frac{3x^2+2x+1}{y}+x^9 frac{3x+1}{y}$
Compare the coefficients of $frac{x^8}{y}$, $frac{x^9}{y}$ and $frac{x^{10}}{y}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1787580%2fevaluating-int-fracxnydx-using-reduction-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$(x^n y)'=n x^{n-1}y+x^n y'$ with $y=frac{3x^2+2x+1}{y}$ and $y'=frac{3x+1}{y}$.
$I_n'=frac{x^n}{y}$
=> $Afrac{x^{10}}{y}+Bfrac{x^9}{y}+Cfrac{x^8}{y}=
9 x^8frac{3x^2+2x+1}{y}+x^9 frac{3x+1}{y}$
Compare the coefficients of $frac{x^8}{y}$, $frac{x^9}{y}$ and $frac{x^{10}}{y}$.
$endgroup$
add a comment |
$begingroup$
$(x^n y)'=n x^{n-1}y+x^n y'$ with $y=frac{3x^2+2x+1}{y}$ and $y'=frac{3x+1}{y}$.
$I_n'=frac{x^n}{y}$
=> $Afrac{x^{10}}{y}+Bfrac{x^9}{y}+Cfrac{x^8}{y}=
9 x^8frac{3x^2+2x+1}{y}+x^9 frac{3x+1}{y}$
Compare the coefficients of $frac{x^8}{y}$, $frac{x^9}{y}$ and $frac{x^{10}}{y}$.
$endgroup$
add a comment |
$begingroup$
$(x^n y)'=n x^{n-1}y+x^n y'$ with $y=frac{3x^2+2x+1}{y}$ and $y'=frac{3x+1}{y}$.
$I_n'=frac{x^n}{y}$
=> $Afrac{x^{10}}{y}+Bfrac{x^9}{y}+Cfrac{x^8}{y}=
9 x^8frac{3x^2+2x+1}{y}+x^9 frac{3x+1}{y}$
Compare the coefficients of $frac{x^8}{y}$, $frac{x^9}{y}$ and $frac{x^{10}}{y}$.
$endgroup$
$(x^n y)'=n x^{n-1}y+x^n y'$ with $y=frac{3x^2+2x+1}{y}$ and $y'=frac{3x+1}{y}$.
$I_n'=frac{x^n}{y}$
=> $Afrac{x^{10}}{y}+Bfrac{x^9}{y}+Cfrac{x^8}{y}=
9 x^8frac{3x^2+2x+1}{y}+x^9 frac{3x+1}{y}$
Compare the coefficients of $frac{x^8}{y}$, $frac{x^9}{y}$ and $frac{x^{10}}{y}$.
answered May 16 '16 at 15:50
user90369user90369
8,158925
8,158925
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1787580%2fevaluating-int-fracxnydx-using-reduction-formula%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown