Equation of motion in a disk and slider system
$begingroup$
I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)
I have used relative velocity principle to calculate velocity of slider A:
$$vec V_C=Rdottheta hat i $$
$$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
$$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
Therfore:
$$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
And as we know the slider has no vertical motion so:
$$Rdotthetacostheta+2.5Rdotphicosphi =0$$
$$dotthetacostheta=-2.5dotphicosphi $$
Therefore:
$$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
From geometry we know:
$$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
$$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
If we want the acceleration in point A:
$$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
So the equation of motion can be derived using newton rule:
$$sum vec F=mvec a $$
$$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$
Is my solution correct?
dynamical-systems
$endgroup$
add a comment |
$begingroup$
I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)
I have used relative velocity principle to calculate velocity of slider A:
$$vec V_C=Rdottheta hat i $$
$$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
$$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
Therfore:
$$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
And as we know the slider has no vertical motion so:
$$Rdotthetacostheta+2.5Rdotphicosphi =0$$
$$dotthetacostheta=-2.5dotphicosphi $$
Therefore:
$$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
From geometry we know:
$$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
$$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
If we want the acceleration in point A:
$$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
So the equation of motion can be derived using newton rule:
$$sum vec F=mvec a $$
$$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$
Is my solution correct?
dynamical-systems
$endgroup$
add a comment |
$begingroup$
I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)
I have used relative velocity principle to calculate velocity of slider A:
$$vec V_C=Rdottheta hat i $$
$$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
$$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
Therfore:
$$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
And as we know the slider has no vertical motion so:
$$Rdotthetacostheta+2.5Rdotphicosphi =0$$
$$dotthetacostheta=-2.5dotphicosphi $$
Therefore:
$$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
From geometry we know:
$$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
$$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
If we want the acceleration in point A:
$$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
So the equation of motion can be derived using newton rule:
$$sum vec F=mvec a $$
$$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$
Is my solution correct?
dynamical-systems
$endgroup$
I want to derive the equation of motion in this system: (the slider mass is m and the disk mass is M and the connecting bar is massless)
I have used relative velocity principle to calculate velocity of slider A:
$$vec V_C=Rdottheta hat i $$
$$vec V_B=vec V_C+vec V_{B/C} =Rdottheta (1+sintheta) hat i +Rdotthetacostheta hat j$$
$$vec V_B=vec V_A+vec V_{B/A}=vec V_A+2.5Rdotphisinphi hat i -2.5Rdotphicosphihat j$$
Therfore:
$$vec V_A=[Rdottheta (1+sintheta)-2.5Rdotphisinphi] hat i +[Rdotthetacostheta+2.5Rdotphicosphi ]hat j$$
And as we know the slider has no vertical motion so:
$$Rdotthetacostheta+2.5Rdotphicosphi =0$$
$$dotthetacostheta=-2.5dotphicosphi $$
Therefore:
$$vec V_A=Rdottheta (1+sintheta+frac {costheta}{cosphi})hat i$$
From geometry we know:
$$Rsintheta =2.5RsinphiRightarrow sintheta =2.5sinphi$$
$$cosphi =sqrt{1-sin^2phi}=sqrt{1-frac {1}{2.5^2}sin^2theta}=1+frac{1}{25}cos2theta $$
If we want the acceleration in point A:
$$vec a_A=frac {d}{dt}vec V_A=[Rddottheta (1+sintheta+costheta)+Rdottheta^2 (costheta-sintheta)]hat i$$
So the equation of motion can be derived using newton rule:
$$sum vec F=mvec a $$
$$F (t)= mRddottheta (1+sintheta+costheta)+mRdottheta^2 (costheta-sintheta)$$
Is my solution correct?
dynamical-systems
dynamical-systems
edited Jan 6 at 18:29
H.H
asked Jan 6 at 11:48
H.HH.H
1466
1466
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
$$V=0$$
$$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
$$I=frac{3}{2}MR^2$$
if your answer for velocity of the slider is correct we can write:
$$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$
so if you use Lagrange equations, you can find the answer:
$$L=T-V$$
$${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$
$endgroup$
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
add a comment |
$begingroup$
The total kinetic energy is given by
$$
K = frac 12 M||vec v_C||^2+frac 12 J_C omega^2+frac 12 m ||vec v_A||^2
$$
with $omega = dottheta$
We know also that
$$
vec v_B = vec v_C + vecomegatimes(B-C)\
vec v_B = vec v_A + vec {dotphi} times (B-A)
$$
or
$$
vec v_C + vecomegatimes(B-C) = vec v_A + vec {dotphi} times (B-A)
$$
Here
$$
B-C = R(costheta,sintheta)\
B-A = lambda R(-cosphi,sinphi)\
vec v_C = R(omega,0)\
vec v_A = R (omega-(lambdadotphi+omega)sintheta,(omega-lambdadotphi)costheta)
$$
then plugin those results into the kinetic energy expression and considering that $T = K - V$ with $V = 0$ we can derive the movement equations as
$$
T_{eta}-frac{d}{dt}T_{doteta}=mathcal{F}
$$
Here $eta = (theta,phi)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063759%2fequation-of-motion-in-a-disk-and-slider-system%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
$$V=0$$
$$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
$$I=frac{3}{2}MR^2$$
if your answer for velocity of the slider is correct we can write:
$$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$
so if you use Lagrange equations, you can find the answer:
$$L=T-V$$
$${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$
$endgroup$
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
add a comment |
$begingroup$
It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
$$V=0$$
$$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
$$I=frac{3}{2}MR^2$$
if your answer for velocity of the slider is correct we can write:
$$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$
so if you use Lagrange equations, you can find the answer:
$$L=T-V$$
$${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$
$endgroup$
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
add a comment |
$begingroup$
It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
$$V=0$$
$$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
$$I=frac{3}{2}MR^2$$
if your answer for velocity of the slider is correct we can write:
$$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$
so if you use Lagrange equations, you can find the answer:
$$L=T-V$$
$${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$
$endgroup$
It seems like a better idea if you try Lagrange method by deriving kinetic and potential energies:
$$V=0$$
$$T=frac{1}{2}mV_A^2+frac{1}{2}I_{disk}omega^2$$
$$I=frac{3}{2}MR^2$$
if your answer for velocity of the slider is correct we can write:
$$T=frac{1}{2}m[Rdottheta (1+sintheta+frac {costheta}{cosphi})]^2+frac{1}{2}frac{3}{2}MR^2dottheta^2$$
so if you use Lagrange equations, you can find the answer:
$$L=T-V$$
$${displaystyle {frac {mathrm {d} }{mathrm {d} t}}left({frac {partial L}{partial {dot {q}}_{j}}}right)={frac {partial L}{partial q_{j}}}}$$
answered Jan 6 at 21:48
HarryHarry
283
283
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
add a comment |
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
$begingroup$
Thank you for your suggestion, but can you derive the equation of motion in order to compare two answers?
$endgroup$
– H.H
Jan 6 at 21:57
add a comment |
$begingroup$
The total kinetic energy is given by
$$
K = frac 12 M||vec v_C||^2+frac 12 J_C omega^2+frac 12 m ||vec v_A||^2
$$
with $omega = dottheta$
We know also that
$$
vec v_B = vec v_C + vecomegatimes(B-C)\
vec v_B = vec v_A + vec {dotphi} times (B-A)
$$
or
$$
vec v_C + vecomegatimes(B-C) = vec v_A + vec {dotphi} times (B-A)
$$
Here
$$
B-C = R(costheta,sintheta)\
B-A = lambda R(-cosphi,sinphi)\
vec v_C = R(omega,0)\
vec v_A = R (omega-(lambdadotphi+omega)sintheta,(omega-lambdadotphi)costheta)
$$
then plugin those results into the kinetic energy expression and considering that $T = K - V$ with $V = 0$ we can derive the movement equations as
$$
T_{eta}-frac{d}{dt}T_{doteta}=mathcal{F}
$$
Here $eta = (theta,phi)$
$endgroup$
add a comment |
$begingroup$
The total kinetic energy is given by
$$
K = frac 12 M||vec v_C||^2+frac 12 J_C omega^2+frac 12 m ||vec v_A||^2
$$
with $omega = dottheta$
We know also that
$$
vec v_B = vec v_C + vecomegatimes(B-C)\
vec v_B = vec v_A + vec {dotphi} times (B-A)
$$
or
$$
vec v_C + vecomegatimes(B-C) = vec v_A + vec {dotphi} times (B-A)
$$
Here
$$
B-C = R(costheta,sintheta)\
B-A = lambda R(-cosphi,sinphi)\
vec v_C = R(omega,0)\
vec v_A = R (omega-(lambdadotphi+omega)sintheta,(omega-lambdadotphi)costheta)
$$
then plugin those results into the kinetic energy expression and considering that $T = K - V$ with $V = 0$ we can derive the movement equations as
$$
T_{eta}-frac{d}{dt}T_{doteta}=mathcal{F}
$$
Here $eta = (theta,phi)$
$endgroup$
add a comment |
$begingroup$
The total kinetic energy is given by
$$
K = frac 12 M||vec v_C||^2+frac 12 J_C omega^2+frac 12 m ||vec v_A||^2
$$
with $omega = dottheta$
We know also that
$$
vec v_B = vec v_C + vecomegatimes(B-C)\
vec v_B = vec v_A + vec {dotphi} times (B-A)
$$
or
$$
vec v_C + vecomegatimes(B-C) = vec v_A + vec {dotphi} times (B-A)
$$
Here
$$
B-C = R(costheta,sintheta)\
B-A = lambda R(-cosphi,sinphi)\
vec v_C = R(omega,0)\
vec v_A = R (omega-(lambdadotphi+omega)sintheta,(omega-lambdadotphi)costheta)
$$
then plugin those results into the kinetic energy expression and considering that $T = K - V$ with $V = 0$ we can derive the movement equations as
$$
T_{eta}-frac{d}{dt}T_{doteta}=mathcal{F}
$$
Here $eta = (theta,phi)$
$endgroup$
The total kinetic energy is given by
$$
K = frac 12 M||vec v_C||^2+frac 12 J_C omega^2+frac 12 m ||vec v_A||^2
$$
with $omega = dottheta$
We know also that
$$
vec v_B = vec v_C + vecomegatimes(B-C)\
vec v_B = vec v_A + vec {dotphi} times (B-A)
$$
or
$$
vec v_C + vecomegatimes(B-C) = vec v_A + vec {dotphi} times (B-A)
$$
Here
$$
B-C = R(costheta,sintheta)\
B-A = lambda R(-cosphi,sinphi)\
vec v_C = R(omega,0)\
vec v_A = R (omega-(lambdadotphi+omega)sintheta,(omega-lambdadotphi)costheta)
$$
then plugin those results into the kinetic energy expression and considering that $T = K - V$ with $V = 0$ we can derive the movement equations as
$$
T_{eta}-frac{d}{dt}T_{doteta}=mathcal{F}
$$
Here $eta = (theta,phi)$
edited Jan 10 at 18:22
answered Jan 10 at 14:06
CesareoCesareo
8,6733516
8,6733516
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063759%2fequation-of-motion-in-a-disk-and-slider-system%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown