Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.
$begingroup$
Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.
I have no idea how to do.
index-notation
$endgroup$
add a comment |
$begingroup$
Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.
I have no idea how to do.
index-notation
$endgroup$
2
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59
add a comment |
$begingroup$
Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.
I have no idea how to do.
index-notation
$endgroup$
Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.
I have no idea how to do.
index-notation
index-notation
asked Jan 6 at 3:45


MaggieMaggie
938
938
2
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59
add a comment |
2
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59
2
2
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063458%2ffind-bigcap-mathcal-ac-and-bigcup-mathcal-ac-with-the-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.
$endgroup$
add a comment |
$begingroup$
$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.
$endgroup$
add a comment |
$begingroup$
$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.
$endgroup$
$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.
answered Jan 6 at 4:59


Kavi Rama MurthyKavi Rama Murthy
55.6k42057
55.6k42057
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063458%2ffind-bigcap-mathcal-ac-and-bigcup-mathcal-ac-with-the-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53
$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54
$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59