Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.












0












$begingroup$


Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.



I have no idea how to do.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:53












  • $begingroup$
    Also, did you mean $bigcap A_{n}^{c}$?
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:54










  • $begingroup$
    Yes, I mean $bigcap A_{n}^{c}$
    $endgroup$
    – Maggie
    Jan 6 at 3:59


















0












$begingroup$


Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.



I have no idea how to do.










share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:53












  • $begingroup$
    Also, did you mean $bigcap A_{n}^{c}$?
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:54










  • $begingroup$
    Yes, I mean $bigcap A_{n}^{c}$
    $endgroup$
    – Maggie
    Jan 6 at 3:59
















0












0








0





$begingroup$


Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.



I have no idea how to do.










share|cite|improve this question









$endgroup$




Let $A_n ={x in Bbb R :-frac {1}{n} lt x lt frac{1}{n}}$,$n in Bbb N$ and define the indexed family $mathcal A^c = { A_{n}^{c} :n in Bbb N }$.
Find $bigcap mathcal A^c$ and $bigcup mathcal A^c$ with the proof.



I have no idea how to do.







index-notation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 6 at 3:45









MaggieMaggie

938




938








  • 2




    $begingroup$
    If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:53












  • $begingroup$
    Also, did you mean $bigcap A_{n}^{c}$?
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:54










  • $begingroup$
    Yes, I mean $bigcap A_{n}^{c}$
    $endgroup$
    – Maggie
    Jan 6 at 3:59
















  • 2




    $begingroup$
    If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:53












  • $begingroup$
    Also, did you mean $bigcap A_{n}^{c}$?
    $endgroup$
    – Lucas Corrêa
    Jan 6 at 3:54










  • $begingroup$
    Yes, I mean $bigcap A_{n}^{c}$
    $endgroup$
    – Maggie
    Jan 6 at 3:59










2




2




$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53






$begingroup$
If $A_{n} = left(-frac{1}{n},frac{1}{n}right)$, then $A_{n}^{c} = left(-infty,-frac{1}{n}right]cupleft[frac{1}{n},inftyright)$. Now, draw the sets on the real line.
$endgroup$
– Lucas Corrêa
Jan 6 at 3:53














$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54




$begingroup$
Also, did you mean $bigcap A_{n}^{c}$?
$endgroup$
– Lucas Corrêa
Jan 6 at 3:54












$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59






$begingroup$
Yes, I mean $bigcap A_{n}^{c}$
$endgroup$
– Maggie
Jan 6 at 3:59












1 Answer
1






active

oldest

votes


















2












$begingroup$

$cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063458%2ffind-bigcap-mathcal-ac-and-bigcup-mathcal-ac-with-the-proof%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      $cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        $cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.






        share|cite|improve this answer









        $endgroup$



        $cap_n mathcal A_n =cap_n (-frac 1 n,frac 1 n)^{c}=(cup_n (-1,1))^{c}=(-1,1)^{c}=mathbb R setminus (-1,1)$. I leave it to you to show that $cup_n mathcal A_n =mathbb R setminus {0}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 6 at 4:59









        Kavi Rama MurthyKavi Rama Murthy

        55.6k42057




        55.6k42057






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3063458%2ffind-bigcap-mathcal-ac-and-bigcup-mathcal-ac-with-the-proof%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith