How can I use spark to writeStream data from a kafka topic into hdfs?
I have been trying to get this code to work for hours:
val spark = SparkSession.builder()
.appName("Consumer")
.getOrCreate()
spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.select("value")
.writeStream
.format(fileFormat)
.option("path", filePath)
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
it gives this exception:
Logical Plan:
Project [value#8]
+- StreamingExecutionRelation KafkaV2[Subscribe[MyTopic]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: java.lang.ClassCastException: org.apache.spark.sql.execution.streaming.SerializedOffset cannot be cast to org.apache.spark.sql.sources.v2.reader.streaming.Offset
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:405)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:390)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at org.apache.spark.sql.execution.streaming.StreamProgress.flatMap(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:389)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:133)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
I don't understand what's going on, I am simply trying to write data from a kafka topic into HDFS using spark streaming. Why is this so hard? And how can I do it?
I got the batching version to work just fine:
spark.read
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.selectExpr("CAST(value AS String)")
.write
.format(fileFormat)
.save(filePath)
scala apache-spark hadoop apache-kafka hdfs
add a comment |
I have been trying to get this code to work for hours:
val spark = SparkSession.builder()
.appName("Consumer")
.getOrCreate()
spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.select("value")
.writeStream
.format(fileFormat)
.option("path", filePath)
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
it gives this exception:
Logical Plan:
Project [value#8]
+- StreamingExecutionRelation KafkaV2[Subscribe[MyTopic]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: java.lang.ClassCastException: org.apache.spark.sql.execution.streaming.SerializedOffset cannot be cast to org.apache.spark.sql.sources.v2.reader.streaming.Offset
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:405)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:390)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at org.apache.spark.sql.execution.streaming.StreamProgress.flatMap(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:389)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:133)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
I don't understand what's going on, I am simply trying to write data from a kafka topic into HDFS using spark streaming. Why is this so hard? And how can I do it?
I got the batching version to work just fine:
spark.read
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.selectExpr("CAST(value AS String)")
.write
.format(fileFormat)
.save(filePath)
scala apache-spark hadoop apache-kafka hdfs
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08
add a comment |
I have been trying to get this code to work for hours:
val spark = SparkSession.builder()
.appName("Consumer")
.getOrCreate()
spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.select("value")
.writeStream
.format(fileFormat)
.option("path", filePath)
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
it gives this exception:
Logical Plan:
Project [value#8]
+- StreamingExecutionRelation KafkaV2[Subscribe[MyTopic]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: java.lang.ClassCastException: org.apache.spark.sql.execution.streaming.SerializedOffset cannot be cast to org.apache.spark.sql.sources.v2.reader.streaming.Offset
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:405)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:390)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at org.apache.spark.sql.execution.streaming.StreamProgress.flatMap(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:389)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:133)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
I don't understand what's going on, I am simply trying to write data from a kafka topic into HDFS using spark streaming. Why is this so hard? And how can I do it?
I got the batching version to work just fine:
spark.read
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.selectExpr("CAST(value AS String)")
.write
.format(fileFormat)
.save(filePath)
scala apache-spark hadoop apache-kafka hdfs
I have been trying to get this code to work for hours:
val spark = SparkSession.builder()
.appName("Consumer")
.getOrCreate()
spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.select("value")
.writeStream
.format(fileFormat)
.option("path", filePath)
.option("checkpointLocation", "/tmp/checkpoint")
.start()
.awaitTermination()
it gives this exception:
Logical Plan:
Project [value#8]
+- StreamingExecutionRelation KafkaV2[Subscribe[MyTopic]], [key#7, value#8, topic#9, partition#10, offset#11L, timestamp#12, timestampType#13]
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:295)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:189)
Caused by: java.lang.ClassCastException: org.apache.spark.sql.execution.streaming.SerializedOffset cannot be cast to org.apache.spark.sql.sources.v2.reader.streaming.Offset
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:405)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1$$anonfun$apply$9.apply(MicroBatchExecution.scala:390)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.execution.streaming.StreamProgress.foreach(StreamProgress.scala:25)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at org.apache.spark.sql.execution.streaming.StreamProgress.flatMap(StreamProgress.scala:25)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$1.apply(MicroBatchExecution.scala:390)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:389)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:133)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:271)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:121)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:117)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:279)
I don't understand what's going on, I am simply trying to write data from a kafka topic into HDFS using spark streaming. Why is this so hard? And how can I do it?
I got the batching version to work just fine:
spark.read
.format("kafka")
.option("kafka.bootstrap.servers", url)
.option("subscribe", topic)
.load()
.selectExpr("CAST(value AS String)")
.write
.format(fileFormat)
.save(filePath)
scala apache-spark hadoop apache-kafka hdfs
scala apache-spark hadoop apache-kafka hdfs
edited Nov 20 '18 at 23:07
cricket_007
81.2k1142111
81.2k1142111
asked Nov 20 '18 at 20:24
hey_youhey_you
216111
216111
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08
add a comment |
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08
add a comment |
2 Answers
2
active
oldest
votes
@happy You are encountering a known bug in structured streaming https://issues.apache.org/jira/browse/SPARK-25257
This is because the offset from disk is never deserialized and the fix will be merged in coming release
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
add a comment |
Everything started working after I changed my version of spark to 2.3.2
.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400975%2fhow-can-i-use-spark-to-writestream-data-from-a-kafka-topic-into-hdfs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
@happy You are encountering a known bug in structured streaming https://issues.apache.org/jira/browse/SPARK-25257
This is because the offset from disk is never deserialized and the fix will be merged in coming release
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
add a comment |
@happy You are encountering a known bug in structured streaming https://issues.apache.org/jira/browse/SPARK-25257
This is because the offset from disk is never deserialized and the fix will be merged in coming release
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
add a comment |
@happy You are encountering a known bug in structured streaming https://issues.apache.org/jira/browse/SPARK-25257
This is because the offset from disk is never deserialized and the fix will be merged in coming release
@happy You are encountering a known bug in structured streaming https://issues.apache.org/jira/browse/SPARK-25257
This is because the offset from disk is never deserialized and the fix will be merged in coming release
answered Nov 20 '18 at 23:26


bhavin tandelbhavin tandel
415
415
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
add a comment |
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
But it's fixed in Spark 2.4?
– cricket_007
Nov 21 '18 at 5:09
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
What fileFormat are you using ?
– bhavin tandel
Nov 21 '18 at 7:16
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
@cricket_007 I changed my spark version to 2.3.2 and everything started working!
– hey_you
Nov 21 '18 at 14:29
add a comment |
Everything started working after I changed my version of spark to 2.3.2
.
add a comment |
Everything started working after I changed my version of spark to 2.3.2
.
add a comment |
Everything started working after I changed my version of spark to 2.3.2
.
Everything started working after I changed my version of spark to 2.3.2
.
answered Nov 21 '18 at 14:30
hey_youhey_you
216111
216111
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53400975%2fhow-can-i-use-spark-to-writestream-data-from-a-kafka-topic-into-hdfs%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Kafka Connect already does this, and is included in Kafka 0.10 and higher... Why write any code to do this?? confluent.io/connector/kafka-connect-hdfs
– cricket_007
Nov 20 '18 at 23:08