how to calculate $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ using Green theorem
$begingroup$
Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.
I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$
i need to close $C$ so i build a triangle with vertices
$(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :
$y = 0 ~~~ dy=0$
$x = t ~~~ dx=dt$
$0leq t leq 1$
$int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays
any hints how i can build an easy enclosier ?
integration multivariable-calculus greens-theorem
$endgroup$
add a comment |
$begingroup$
Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.
I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$
i need to close $C$ so i build a triangle with vertices
$(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :
$y = 0 ~~~ dy=0$
$x = t ~~~ dx=dt$
$0leq t leq 1$
$int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays
any hints how i can build an easy enclosier ?
integration multivariable-calculus greens-theorem
$endgroup$
add a comment |
$begingroup$
Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.
I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$
i need to close $C$ so i build a triangle with vertices
$(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :
$y = 0 ~~~ dy=0$
$x = t ~~~ dx=dt$
$0leq t leq 1$
$int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays
any hints how i can build an easy enclosier ?
integration multivariable-calculus greens-theorem
$endgroup$
Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.
I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$
i need to close $C$ so i build a triangle with vertices
$(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :
$y = 0 ~~~ dy=0$
$x = t ~~~ dx=dt$
$0leq t leq 1$
$int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays
any hints how i can build an easy enclosier ?
integration multivariable-calculus greens-theorem
integration multivariable-calculus greens-theorem
edited Jan 8 at 14:27
Mather
asked Jan 8 at 14:21


Mather Mather
3047
3047
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
$$begin{eqnarray}
int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
&=&eint_D (2x^2+1)dx + 2xydy\
&=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
&=&-e.
end{eqnarray}$$
$endgroup$
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
add a comment |
$begingroup$
Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.
$endgroup$
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
add a comment |
$begingroup$
Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
$$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066221%2fhow-to-calculate-int-c2x21ex2y2dx2xyex2y2dy-using-green%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
$$begin{eqnarray}
int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
&=&eint_D (2x^2+1)dx + 2xydy\
&=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
&=&-e.
end{eqnarray}$$
$endgroup$
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
add a comment |
$begingroup$
Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
$$begin{eqnarray}
int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
&=&eint_D (2x^2+1)dx + 2xydy\
&=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
&=&-e.
end{eqnarray}$$
$endgroup$
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
add a comment |
$begingroup$
Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
$$begin{eqnarray}
int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
&=&eint_D (2x^2+1)dx + 2xydy\
&=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
&=&-e.
end{eqnarray}$$
$endgroup$
Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
$$begin{eqnarray}
int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
&=&eint_D (2x^2+1)dx + 2xydy\
&=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
&=&-e.
end{eqnarray}$$
edited Jan 8 at 14:44
answered Jan 8 at 14:38
SongSong
11.2k628
11.2k628
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
add a comment |
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
yes i got it now alone thaaaaanks ! i am glad to notice that
$endgroup$
– Mather
Jan 8 at 14:40
add a comment |
$begingroup$
Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.
$endgroup$
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
add a comment |
$begingroup$
Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.
$endgroup$
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
add a comment |
$begingroup$
Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.
$endgroup$
Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.
answered Jan 8 at 14:38
zipirovichzipirovich
11.2k11631
11.2k11631
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
add a comment |
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
thank you i noticed that right after asking the question !
$endgroup$
– Mather
Jan 8 at 14:40
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
i have question though can i use implicit function theorem ?
$endgroup$
– Mather
Jan 8 at 14:42
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
$ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
$endgroup$
– Mather
Jan 8 at 14:43
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
$begingroup$
@Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
$endgroup$
– zipirovich
Jan 8 at 14:46
add a comment |
$begingroup$
Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
$$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$
$endgroup$
add a comment |
$begingroup$
Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
$$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$
$endgroup$
add a comment |
$begingroup$
Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
$$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$
$endgroup$
Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
$$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$
edited Jan 8 at 20:59
answered Jan 8 at 16:41
MaximMaxim
5,1381219
5,1381219
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066221%2fhow-to-calculate-int-c2x21ex2y2dx2xyex2y2dy-using-green%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown