how to calculate $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ using Green theorem












1












$begingroup$



Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.




I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$



i need to close $C$ so i build a triangle with vertices
$(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :



$y = 0 ~~~ dy=0$



$x = t ~~~ dx=dt$



$0leq t leq 1$




$int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays




any hints how i can build an easy enclosier ?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$



    Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.




    I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$



    i need to close $C$ so i build a triangle with vertices
    $(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :



    $y = 0 ~~~ dy=0$



    $x = t ~~~ dx=dt$



    $0leq t leq 1$




    $int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays




    any hints how i can build an easy enclosier ?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$



      Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.




      I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$



      i need to close $C$ so i build a triangle with vertices
      $(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :



      $y = 0 ~~~ dy=0$



      $x = t ~~~ dx=dt$



      $0leq t leq 1$




      $int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays




      any hints how i can build an easy enclosier ?










      share|cite|improve this question











      $endgroup$





      Compute $int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy$ where $C$ connects $(1,0)$ to $(0,1)$ by a straight line segment.




      I tried to use green theorem since $Q_x = P_y$ so $int vec F_dot{}vec dr=0$



      i need to close $C$ so i build a triangle with vertices
      $(0,0)$ , $(1,0)$ ,$(0,1)$ now i got a complicated integral in the line parametrization :



      $y = 0 ~~~ dy=0$



      $x = t ~~~ dx=dt$



      $0leq t leq 1$




      $int_0^1 (2t^2 + 1)e^{t^2}dt$ , since $dy=0$ only the left side stays




      any hints how i can build an easy enclosier ?







      integration multivariable-calculus greens-theorem






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 8 at 14:27







      Mather

















      asked Jan 8 at 14:21









      Mather Mather

      3047




      3047






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
          $$begin{eqnarray}
          int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
          &=&eint_D (2x^2+1)dx + 2xydy\
          &=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
          &=&-e.
          end{eqnarray}$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            yes i got it now alone thaaaaanks ! i am glad to notice that
            $endgroup$
            – Mather
            Jan 8 at 14:40



















          1












          $begingroup$

          Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            thank you i noticed that right after asking the question !
            $endgroup$
            – Mather
            Jan 8 at 14:40










          • $begingroup$
            i have question though can i use implicit function theorem ?
            $endgroup$
            – Mather
            Jan 8 at 14:42










          • $begingroup$
            $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
            $endgroup$
            – Mather
            Jan 8 at 14:43












          • $begingroup$
            @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
            $endgroup$
            – zipirovich
            Jan 8 at 14:46



















          0












          $begingroup$

          Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
          $$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066221%2fhow-to-calculate-int-c2x21ex2y2dx2xyex2y2dy-using-green%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
            $$begin{eqnarray}
            int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
            &=&eint_D (2x^2+1)dx + 2xydy\
            &=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
            &=&-e.
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              yes i got it now alone thaaaaanks ! i am glad to notice that
              $endgroup$
              – Mather
              Jan 8 at 14:40
















            2












            $begingroup$

            Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
            $$begin{eqnarray}
            int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
            &=&eint_D (2x^2+1)dx + 2xydy\
            &=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
            &=&-e.
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              yes i got it now alone thaaaaanks ! i am glad to notice that
              $endgroup$
              – Mather
              Jan 8 at 14:40














            2












            2








            2





            $begingroup$

            Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
            $$begin{eqnarray}
            int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
            &=&eint_D (2x^2+1)dx + 2xydy\
            &=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
            &=&-e.
            end{eqnarray}$$






            share|cite|improve this answer











            $endgroup$



            Since $e^{x^2+y^2}$ is a radial function, it is better to choose $D:(cos t,sin t), 0le tle frac{pi}{2}$ and use the fact
            $$begin{eqnarray}
            int_{C}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy&=&int_{D}(2x^2+1)e^{x^2+y^2}dx+(2xy)e^{x^2+y^2}dy\
            &=&eint_D (2x^2+1)dx + 2xydy\
            &=&eleft[left(frac{2}{3}x^3+xright)Big|^0_1+frac{2}{3}right]\
            &=&-e.
            end{eqnarray}$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 8 at 14:44

























            answered Jan 8 at 14:38









            SongSong

            11.2k628




            11.2k628












            • $begingroup$
              yes i got it now alone thaaaaanks ! i am glad to notice that
              $endgroup$
              – Mather
              Jan 8 at 14:40


















            • $begingroup$
              yes i got it now alone thaaaaanks ! i am glad to notice that
              $endgroup$
              – Mather
              Jan 8 at 14:40
















            $begingroup$
            yes i got it now alone thaaaaanks ! i am glad to notice that
            $endgroup$
            – Mather
            Jan 8 at 14:40




            $begingroup$
            yes i got it now alone thaaaaanks ! i am glad to notice that
            $endgroup$
            – Mather
            Jan 8 at 14:40











            1












            $begingroup$

            Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              thank you i noticed that right after asking the question !
              $endgroup$
              – Mather
              Jan 8 at 14:40










            • $begingroup$
              i have question though can i use implicit function theorem ?
              $endgroup$
              – Mather
              Jan 8 at 14:42










            • $begingroup$
              $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
              $endgroup$
              – Mather
              Jan 8 at 14:43












            • $begingroup$
              @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
              $endgroup$
              – zipirovich
              Jan 8 at 14:46
















            1












            $begingroup$

            Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              thank you i noticed that right after asking the question !
              $endgroup$
              – Mather
              Jan 8 at 14:40










            • $begingroup$
              i have question though can i use implicit function theorem ?
              $endgroup$
              – Mather
              Jan 8 at 14:42










            • $begingroup$
              $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
              $endgroup$
              – Mather
              Jan 8 at 14:43












            • $begingroup$
              @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
              $endgroup$
              – zipirovich
              Jan 8 at 14:46














            1












            1








            1





            $begingroup$

            Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.






            share|cite|improve this answer









            $endgroup$



            Seeing $x^2+y^2$ in the expression hints at circles and polar coordinates. I would suggest connecting the two given points with the quarter of the circle $x^2+y^2=1$ in the first quadrant. Then you can parametrize it as $x=cos t$, $y=sin t$, for $0le tledfrac{pi}{2}$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 8 at 14:38









            zipirovichzipirovich

            11.2k11631




            11.2k11631












            • $begingroup$
              thank you i noticed that right after asking the question !
              $endgroup$
              – Mather
              Jan 8 at 14:40










            • $begingroup$
              i have question though can i use implicit function theorem ?
              $endgroup$
              – Mather
              Jan 8 at 14:42










            • $begingroup$
              $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
              $endgroup$
              – Mather
              Jan 8 at 14:43












            • $begingroup$
              @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
              $endgroup$
              – zipirovich
              Jan 8 at 14:46


















            • $begingroup$
              thank you i noticed that right after asking the question !
              $endgroup$
              – Mather
              Jan 8 at 14:40










            • $begingroup$
              i have question though can i use implicit function theorem ?
              $endgroup$
              – Mather
              Jan 8 at 14:42










            • $begingroup$
              $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
              $endgroup$
              – Mather
              Jan 8 at 14:43












            • $begingroup$
              @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
              $endgroup$
              – zipirovich
              Jan 8 at 14:46
















            $begingroup$
            thank you i noticed that right after asking the question !
            $endgroup$
            – Mather
            Jan 8 at 14:40




            $begingroup$
            thank you i noticed that right after asking the question !
            $endgroup$
            – Mather
            Jan 8 at 14:40












            $begingroup$
            i have question though can i use implicit function theorem ?
            $endgroup$
            – Mather
            Jan 8 at 14:42




            $begingroup$
            i have question though can i use implicit function theorem ?
            $endgroup$
            – Mather
            Jan 8 at 14:42












            $begingroup$
            $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
            $endgroup$
            – Mather
            Jan 8 at 14:43






            $begingroup$
            $ x^2 + y^2 = 1$ $2x + 2yy' = 0$ $dy = frac{-x}{y} dx$
            $endgroup$
            – Mather
            Jan 8 at 14:43














            $begingroup$
            @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
            $endgroup$
            – zipirovich
            Jan 8 at 14:46




            $begingroup$
            @Mather: Use it for what? Here you need to find both $dx$ and $dy$ with respect to $t$ from the chosen parametrization, not with respect to each other. For example, $x=cos t$, so $dx=-sin t,dt$.
            $endgroup$
            – zipirovich
            Jan 8 at 14:46











            0












            $begingroup$

            Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
            $$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
              $$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
                $$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$






                share|cite|improve this answer











                $endgroup$



                Since $int x e^{x^2 + y^2} d(y^2) = x e^{x^2 + y^2} + C(x)$, we can see that $phi(x, y) = x e^{x^2 + y^2}$ is a potential for $mathbf F$. Then, by the gradient theorem,
                $$I = int_C (nabla phi) cdot dmathbf r = phi(0, 1) - phi(1, 0) = -e.$$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 8 at 20:59

























                answered Jan 8 at 16:41









                MaximMaxim

                5,1381219




                5,1381219






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3066221%2fhow-to-calculate-int-c2x21ex2y2dx2xyex2y2dy-using-green%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith