How to interpolate 2D array from a coarser resolution to finer resolution












0















Suppose that I have an emission data with shape (21600,43200),
which corresponds to the lat and lon,i.e,



lat = np.arange(21600)*(-0.008333333)+90
lon = np.arange(43200)*0.00833333-180


And I also have a scaling factor with shape of (720,1440,7),which corresponds to lat , lon, day of week, and



lat = np.arange(720)*0.25-90 
lon = np.arange(1440)*0.25-180


For now, I want to apply the factor to the emission data and I think I need to interpolate the factor on (720,1440) to (21600,43200). After that I can multiply the interpolated factor with the emission data to get the new emission output.



But I have a difficulty on the interpolation method.
Could anyone give me some suggestions?










share|improve this question




















  • 1





    scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

    – jdehesa
    Nov 20 '18 at 12:14
















0















Suppose that I have an emission data with shape (21600,43200),
which corresponds to the lat and lon,i.e,



lat = np.arange(21600)*(-0.008333333)+90
lon = np.arange(43200)*0.00833333-180


And I also have a scaling factor with shape of (720,1440,7),which corresponds to lat , lon, day of week, and



lat = np.arange(720)*0.25-90 
lon = np.arange(1440)*0.25-180


For now, I want to apply the factor to the emission data and I think I need to interpolate the factor on (720,1440) to (21600,43200). After that I can multiply the interpolated factor with the emission data to get the new emission output.



But I have a difficulty on the interpolation method.
Could anyone give me some suggestions?










share|improve this question




















  • 1





    scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

    – jdehesa
    Nov 20 '18 at 12:14














0












0








0








Suppose that I have an emission data with shape (21600,43200),
which corresponds to the lat and lon,i.e,



lat = np.arange(21600)*(-0.008333333)+90
lon = np.arange(43200)*0.00833333-180


And I also have a scaling factor with shape of (720,1440,7),which corresponds to lat , lon, day of week, and



lat = np.arange(720)*0.25-90 
lon = np.arange(1440)*0.25-180


For now, I want to apply the factor to the emission data and I think I need to interpolate the factor on (720,1440) to (21600,43200). After that I can multiply the interpolated factor with the emission data to get the new emission output.



But I have a difficulty on the interpolation method.
Could anyone give me some suggestions?










share|improve this question
















Suppose that I have an emission data with shape (21600,43200),
which corresponds to the lat and lon,i.e,



lat = np.arange(21600)*(-0.008333333)+90
lon = np.arange(43200)*0.00833333-180


And I also have a scaling factor with shape of (720,1440,7),which corresponds to lat , lon, day of week, and



lat = np.arange(720)*0.25-90 
lon = np.arange(1440)*0.25-180


For now, I want to apply the factor to the emission data and I think I need to interpolate the factor on (720,1440) to (21600,43200). After that I can multiply the interpolated factor with the emission data to get the new emission output.



But I have a difficulty on the interpolation method.
Could anyone give me some suggestions?







numpy scipy netcdf python-xarray






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 20 '18 at 18:00









tel

7,34121431




7,34121431










asked Nov 20 '18 at 11:36









Allen ZhangAllen Zhang

178




178








  • 1





    scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

    – jdehesa
    Nov 20 '18 at 12:14














  • 1





    scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

    – jdehesa
    Nov 20 '18 at 12:14








1




1





scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

– jdehesa
Nov 20 '18 at 12:14





scipy.interpolate.interp2d should solve your problem... as long as you can fit everything in memory (if you can't, you could compute the interpolation by pieces).

– jdehesa
Nov 20 '18 at 12:14












2 Answers
2






active

oldest

votes


















3














Here's a complete example of the kind of interpolation you're trying to do. For example purposes I used emission data with shape (10, 20) and scale data with shape (5, 10). It uses scipy.interpolate.RectBivariateSpline, which is the recommended method for interpolating on regular grids:



import scipy.interpolate as sci

def latlon(res):
return (np.arange(res)*(180/res) - 90,
np.arange(2*res)*(360/(2*res)) - 180)

lat_fine,lon_fine = latlon(10)
emission = np.ones(10*20).reshape(10,20)

lat_coarse,lon_coarse = latlon(5)
scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)

f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
scale_interp = f(lat_em, lon_em)

with np.printoptions(precision=1, suppress=True, linewidth=9999):
print('original emission data:n%sn' % emission)
print('original scale data:n%sn' % scale)
print('interpolated scale data:n%sn' % scale_interp)
print('scaled emission data:n%sn' % (emission*scale_interp))


which outputs:



original emission data:
[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

original scale data:
[[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
[0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
[0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
[0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
[0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]

interpolated scale data:
[[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
[0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
[0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
[0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
[0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
[0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
[0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
[0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]

scaled emission data:
[[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
[0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
[0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
[0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
[0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
[0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
[0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
[0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
[0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]


Notes





  • The interpolation methods in scipy.interpolate expect both x and y to be strictly increasing, so you'll have to make sure that your emission data is arranged in a grid such that:



    lat = np.arange(21600)*0.008333333 - 90


    instead of:



    lat = np.arange(21600)*(-0.008333333) + 90


    like you have above. You can flip your emission data like so:



    emission = emission[::-1, :]







share|improve this answer

































    1














    If you're just looking for nearest neighbor or linear interpolation, you can use xarray's native da.interp method:



    scaling_interped = scaling_factor.interp(
    lon=emissions.lon,
    lat=emissions.lat,
    method='nearest') # or 'linear'


    note that this will dramatically increase the size of the array. Assuming these are 64-bit floats, the result will be approximately (21600*43200*7)*8/(1024**3) or 48.7 GB. You could cut the in-memory size by a factor of 7 by chunking the array by day of week and doing the computing out of core with dask.



    If you want to use an interpolation scheme other than nearest or linear, use the method suggested by tel.






    share|improve this answer























      Your Answer






      StackExchange.ifUsing("editor", function () {
      StackExchange.using("externalEditor", function () {
      StackExchange.using("snippets", function () {
      StackExchange.snippets.init();
      });
      });
      }, "code-snippets");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "1"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392177%2fhow-to-interpolate-2d-array-from-a-coarser-resolution-to-finer-resolution%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      Here's a complete example of the kind of interpolation you're trying to do. For example purposes I used emission data with shape (10, 20) and scale data with shape (5, 10). It uses scipy.interpolate.RectBivariateSpline, which is the recommended method for interpolating on regular grids:



      import scipy.interpolate as sci

      def latlon(res):
      return (np.arange(res)*(180/res) - 90,
      np.arange(2*res)*(360/(2*res)) - 180)

      lat_fine,lon_fine = latlon(10)
      emission = np.ones(10*20).reshape(10,20)

      lat_coarse,lon_coarse = latlon(5)
      scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)

      f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
      scale_interp = f(lat_em, lon_em)

      with np.printoptions(precision=1, suppress=True, linewidth=9999):
      print('original emission data:n%sn' % emission)
      print('original scale data:n%sn' % scale)
      print('interpolated scale data:n%sn' % scale_interp)
      print('scaled emission data:n%sn' % (emission*scale_interp))


      which outputs:



      original emission data:
      [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
      [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

      original scale data:
      [[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
      [0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
      [0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
      [0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
      [0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]

      interpolated scale data:
      [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
      [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
      [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
      [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
      [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
      [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
      [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
      [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
      [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
      [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]

      scaled emission data:
      [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
      [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
      [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
      [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
      [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
      [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
      [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
      [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
      [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
      [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]


      Notes





      • The interpolation methods in scipy.interpolate expect both x and y to be strictly increasing, so you'll have to make sure that your emission data is arranged in a grid such that:



        lat = np.arange(21600)*0.008333333 - 90


        instead of:



        lat = np.arange(21600)*(-0.008333333) + 90


        like you have above. You can flip your emission data like so:



        emission = emission[::-1, :]







      share|improve this answer






























        3














        Here's a complete example of the kind of interpolation you're trying to do. For example purposes I used emission data with shape (10, 20) and scale data with shape (5, 10). It uses scipy.interpolate.RectBivariateSpline, which is the recommended method for interpolating on regular grids:



        import scipy.interpolate as sci

        def latlon(res):
        return (np.arange(res)*(180/res) - 90,
        np.arange(2*res)*(360/(2*res)) - 180)

        lat_fine,lon_fine = latlon(10)
        emission = np.ones(10*20).reshape(10,20)

        lat_coarse,lon_coarse = latlon(5)
        scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)

        f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
        scale_interp = f(lat_em, lon_em)

        with np.printoptions(precision=1, suppress=True, linewidth=9999):
        print('original emission data:n%sn' % emission)
        print('original scale data:n%sn' % scale)
        print('interpolated scale data:n%sn' % scale_interp)
        print('scaled emission data:n%sn' % (emission*scale_interp))


        which outputs:



        original emission data:
        [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
        [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

        original scale data:
        [[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
        [0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
        [0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
        [0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
        [0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]

        interpolated scale data:
        [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
        [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
        [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
        [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
        [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
        [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
        [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
        [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
        [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
        [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]

        scaled emission data:
        [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
        [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
        [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
        [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
        [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
        [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
        [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
        [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
        [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
        [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]


        Notes





        • The interpolation methods in scipy.interpolate expect both x and y to be strictly increasing, so you'll have to make sure that your emission data is arranged in a grid such that:



          lat = np.arange(21600)*0.008333333 - 90


          instead of:



          lat = np.arange(21600)*(-0.008333333) + 90


          like you have above. You can flip your emission data like so:



          emission = emission[::-1, :]







        share|improve this answer




























          3












          3








          3







          Here's a complete example of the kind of interpolation you're trying to do. For example purposes I used emission data with shape (10, 20) and scale data with shape (5, 10). It uses scipy.interpolate.RectBivariateSpline, which is the recommended method for interpolating on regular grids:



          import scipy.interpolate as sci

          def latlon(res):
          return (np.arange(res)*(180/res) - 90,
          np.arange(2*res)*(360/(2*res)) - 180)

          lat_fine,lon_fine = latlon(10)
          emission = np.ones(10*20).reshape(10,20)

          lat_coarse,lon_coarse = latlon(5)
          scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)

          f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
          scale_interp = f(lat_em, lon_em)

          with np.printoptions(precision=1, suppress=True, linewidth=9999):
          print('original emission data:n%sn' % emission)
          print('original scale data:n%sn' % scale)
          print('interpolated scale data:n%sn' % scale_interp)
          print('scaled emission data:n%sn' % (emission*scale_interp))


          which outputs:



          original emission data:
          [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

          original scale data:
          [[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
          [0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
          [0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
          [0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
          [0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]

          interpolated scale data:
          [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
          [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
          [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
          [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
          [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
          [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
          [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
          [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]

          scaled emission data:
          [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
          [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
          [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
          [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
          [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
          [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
          [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
          [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]


          Notes





          • The interpolation methods in scipy.interpolate expect both x and y to be strictly increasing, so you'll have to make sure that your emission data is arranged in a grid such that:



            lat = np.arange(21600)*0.008333333 - 90


            instead of:



            lat = np.arange(21600)*(-0.008333333) + 90


            like you have above. You can flip your emission data like so:



            emission = emission[::-1, :]







          share|improve this answer















          Here's a complete example of the kind of interpolation you're trying to do. For example purposes I used emission data with shape (10, 20) and scale data with shape (5, 10). It uses scipy.interpolate.RectBivariateSpline, which is the recommended method for interpolating on regular grids:



          import scipy.interpolate as sci

          def latlon(res):
          return (np.arange(res)*(180/res) - 90,
          np.arange(2*res)*(360/(2*res)) - 180)

          lat_fine,lon_fine = latlon(10)
          emission = np.ones(10*20).reshape(10,20)

          lat_coarse,lon_coarse = latlon(5)
          scale = np.linspace(0, .5, num=5).reshape(-1, 1) + np.linspace(0, .5, num=10)

          f = sci.RectBivariateSpline(lat_coarse, lon_coarse, scale)
          scale_interp = f(lat_em, lon_em)

          with np.printoptions(precision=1, suppress=True, linewidth=9999):
          print('original emission data:n%sn' % emission)
          print('original scale data:n%sn' % scale)
          print('interpolated scale data:n%sn' % scale_interp)
          print('scaled emission data:n%sn' % (emission*scale_interp))


          which outputs:



          original emission data:
          [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
          [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]

          original scale data:
          [[0. 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5]
          [0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6]
          [0.2 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.8]
          [0.4 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9]
          [0.5 0.6 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1. ]]

          interpolated scale data:
          [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
          [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
          [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
          [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
          [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
          [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
          [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
          [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]

          scaled emission data:
          [[0. 0. 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5]
          [0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6]
          [0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6]
          [0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7]
          [0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8]
          [0.3 0.3 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 0.8]
          [0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9]
          [0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]
          [0.5 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 0.9 0.9 0.9 1. 1. 1. ]]


          Notes





          • The interpolation methods in scipy.interpolate expect both x and y to be strictly increasing, so you'll have to make sure that your emission data is arranged in a grid such that:



            lat = np.arange(21600)*0.008333333 - 90


            instead of:



            lat = np.arange(21600)*(-0.008333333) + 90


            like you have above. You can flip your emission data like so:



            emission = emission[::-1, :]








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 20 '18 at 18:13

























          answered Nov 20 '18 at 17:57









          teltel

          7,34121431




          7,34121431

























              1














              If you're just looking for nearest neighbor or linear interpolation, you can use xarray's native da.interp method:



              scaling_interped = scaling_factor.interp(
              lon=emissions.lon,
              lat=emissions.lat,
              method='nearest') # or 'linear'


              note that this will dramatically increase the size of the array. Assuming these are 64-bit floats, the result will be approximately (21600*43200*7)*8/(1024**3) or 48.7 GB. You could cut the in-memory size by a factor of 7 by chunking the array by day of week and doing the computing out of core with dask.



              If you want to use an interpolation scheme other than nearest or linear, use the method suggested by tel.






              share|improve this answer




























                1














                If you're just looking for nearest neighbor or linear interpolation, you can use xarray's native da.interp method:



                scaling_interped = scaling_factor.interp(
                lon=emissions.lon,
                lat=emissions.lat,
                method='nearest') # or 'linear'


                note that this will dramatically increase the size of the array. Assuming these are 64-bit floats, the result will be approximately (21600*43200*7)*8/(1024**3) or 48.7 GB. You could cut the in-memory size by a factor of 7 by chunking the array by day of week and doing the computing out of core with dask.



                If you want to use an interpolation scheme other than nearest or linear, use the method suggested by tel.






                share|improve this answer


























                  1












                  1








                  1







                  If you're just looking for nearest neighbor or linear interpolation, you can use xarray's native da.interp method:



                  scaling_interped = scaling_factor.interp(
                  lon=emissions.lon,
                  lat=emissions.lat,
                  method='nearest') # or 'linear'


                  note that this will dramatically increase the size of the array. Assuming these are 64-bit floats, the result will be approximately (21600*43200*7)*8/(1024**3) or 48.7 GB. You could cut the in-memory size by a factor of 7 by chunking the array by day of week and doing the computing out of core with dask.



                  If you want to use an interpolation scheme other than nearest or linear, use the method suggested by tel.






                  share|improve this answer













                  If you're just looking for nearest neighbor or linear interpolation, you can use xarray's native da.interp method:



                  scaling_interped = scaling_factor.interp(
                  lon=emissions.lon,
                  lat=emissions.lat,
                  method='nearest') # or 'linear'


                  note that this will dramatically increase the size of the array. Assuming these are 64-bit floats, the result will be approximately (21600*43200*7)*8/(1024**3) or 48.7 GB. You could cut the in-memory size by a factor of 7 by chunking the array by day of week and doing the computing out of core with dask.



                  If you want to use an interpolation scheme other than nearest or linear, use the method suggested by tel.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 26 '18 at 2:18









                  delgadomdelgadom

                  812718




                  812718






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53392177%2fhow-to-interpolate-2d-array-from-a-coarser-resolution-to-finer-resolution%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith