Is there an easy way to compute the jacobian of a normalized vector?
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
add a comment |
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
add a comment |
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
If $x in mathbb{R}^3$ I want to compute the jacobian of the following function
$$
f(x) = frac{x}{lVert x rVert }
$$
If I proceed I get a matrix whose elements are
$$
a_{ij} = begin{cases}
frac{1}{lVert x rVert} - frac{x_i^2}{lVert x rVert^3} & i = j \
-frac{x_i x_j}{lVert x rVert^3} &i neq j
end{cases}
$$
Is this the most compact form?
The derivation is based on the product rule componentwise.
multivariable-calculus jacobian
multivariable-calculus jacobian
edited Nov 21 '18 at 9:08
asked Aug 14 '18 at 18:09
user8469759
1,3631617
1,3631617
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882762%2fis-there-an-easy-way-to-compute-the-jacobian-of-a-normalized-vector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
add a comment |
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
add a comment |
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
I get the same result:
$$
begin{align}
J_{ij}
&= partial_j left( frac{x}{lVert x rVert} right)_i \
&= partial_j x_i left(sum_k x_k^2right)^{-1/2} \
&= frac{delta_{ij}}{lVert x rVert} +
x_i left(-frac{1}{2}right) left(sum_k x_k^2right)^{-3/2}(2 x_k delta_{kj}) \
&= frac{delta_{ij}}{lVert x rVert} - frac{x_i x_j}{lVert x rVert^3}
end{align}
$$
answered Aug 14 '18 at 18:20


mvw
31.3k22252
31.3k22252
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
add a comment |
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
Maybe an equivalent would be $$frac{1}{lVert x rVert}left(I - frac{x cdot x^T}{lVert x rVert^2} right)$$
– user8469759
Aug 14 '18 at 18:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2882762%2fis-there-an-easy-way-to-compute-the-jacobian-of-a-normalized-vector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown