Is this estimator biased [Geometric Distribution]?
Using the method of moments we get that
$$hat{theta} = frac{n}{sum_{i=1}^{n}X_i},$$
where $X_isim text{Geo}(p)$ for $i=1,2,3,cdots,n$ and pmf $P(X_i=k) = (1-p)^{k-1}p$ for $k=1,2,3,cdots.$
Then $bar{X}=sum_{i=1}^{n}X_isim text{NB}(n,p)$ where NB stands for negative binomial distribution with pmf
$$P(bar{X}=k)=binom{k+n-1}{k}(1-p)^{k-1}p^{n}$$
where $k=1,2,3,cdots.$ Thus
$$mathbb{E}left[frac{n}{bar{X}}right] = nsum_{k=1}^{infty}frac{1}{k}binom{k+n-1}{k}(1-p)^{k-1}p^{n}.$$
I am not sure how to compute this sum analytically. Maybe I can say that
$$E[n/bar{X}]>np^n $$
and so $hat{theta}$ is not a biased estimator. Furthermore, I am also interested in the consistency of the estimator, but I am not sure how to do this. Any hints in this regard will also be much appreciated.
probability-theory statistical-inference
add a comment |
Using the method of moments we get that
$$hat{theta} = frac{n}{sum_{i=1}^{n}X_i},$$
where $X_isim text{Geo}(p)$ for $i=1,2,3,cdots,n$ and pmf $P(X_i=k) = (1-p)^{k-1}p$ for $k=1,2,3,cdots.$
Then $bar{X}=sum_{i=1}^{n}X_isim text{NB}(n,p)$ where NB stands for negative binomial distribution with pmf
$$P(bar{X}=k)=binom{k+n-1}{k}(1-p)^{k-1}p^{n}$$
where $k=1,2,3,cdots.$ Thus
$$mathbb{E}left[frac{n}{bar{X}}right] = nsum_{k=1}^{infty}frac{1}{k}binom{k+n-1}{k}(1-p)^{k-1}p^{n}.$$
I am not sure how to compute this sum analytically. Maybe I can say that
$$E[n/bar{X}]>np^n $$
and so $hat{theta}$ is not a biased estimator. Furthermore, I am also interested in the consistency of the estimator, but I am not sure how to do this. Any hints in this regard will also be much appreciated.
probability-theory statistical-inference
add a comment |
Using the method of moments we get that
$$hat{theta} = frac{n}{sum_{i=1}^{n}X_i},$$
where $X_isim text{Geo}(p)$ for $i=1,2,3,cdots,n$ and pmf $P(X_i=k) = (1-p)^{k-1}p$ for $k=1,2,3,cdots.$
Then $bar{X}=sum_{i=1}^{n}X_isim text{NB}(n,p)$ where NB stands for negative binomial distribution with pmf
$$P(bar{X}=k)=binom{k+n-1}{k}(1-p)^{k-1}p^{n}$$
where $k=1,2,3,cdots.$ Thus
$$mathbb{E}left[frac{n}{bar{X}}right] = nsum_{k=1}^{infty}frac{1}{k}binom{k+n-1}{k}(1-p)^{k-1}p^{n}.$$
I am not sure how to compute this sum analytically. Maybe I can say that
$$E[n/bar{X}]>np^n $$
and so $hat{theta}$ is not a biased estimator. Furthermore, I am also interested in the consistency of the estimator, but I am not sure how to do this. Any hints in this regard will also be much appreciated.
probability-theory statistical-inference
Using the method of moments we get that
$$hat{theta} = frac{n}{sum_{i=1}^{n}X_i},$$
where $X_isim text{Geo}(p)$ for $i=1,2,3,cdots,n$ and pmf $P(X_i=k) = (1-p)^{k-1}p$ for $k=1,2,3,cdots.$
Then $bar{X}=sum_{i=1}^{n}X_isim text{NB}(n,p)$ where NB stands for negative binomial distribution with pmf
$$P(bar{X}=k)=binom{k+n-1}{k}(1-p)^{k-1}p^{n}$$
where $k=1,2,3,cdots.$ Thus
$$mathbb{E}left[frac{n}{bar{X}}right] = nsum_{k=1}^{infty}frac{1}{k}binom{k+n-1}{k}(1-p)^{k-1}p^{n}.$$
I am not sure how to compute this sum analytically. Maybe I can say that
$$E[n/bar{X}]>np^n $$
and so $hat{theta}$ is not a biased estimator. Furthermore, I am also interested in the consistency of the estimator, but I am not sure how to do this. Any hints in this regard will also be much appreciated.
probability-theory statistical-inference
probability-theory statistical-inference
asked Dec 23 '18 at 17:54
Hello_WorldHello_World
4,14021630
4,14021630
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
Let $f$ be a strictly convex function and let $X$ be not constant a.s. Then by Jensen's inequality,
$$mathbb{E}f(X) > f(mathbb{E}X).$$
Taking $f(x) = 1/x$ ($x>0$) and $X=bar{X}$, you get:
$$mathbb{E}left(frac{1}{bar{X}}right)>frac{1}{mathbb{E}bar{X}},$$
so indeed:
$$mathbb{E}left(frac{n}{sum_i X_i}right)>p.$$
add a comment |
For consistency of the estimator, note that since the $X_i$ are i.i.d, we have by the SLLN, that
$$
hat {p}=frac{1}{sum_{i=1}^nX_i/n}stackrel{text{a.s}}{to}frac{1}{EX_1}=frac{1}{1/p}=p
$$
whence the estimator is (strongly) consistent.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050561%2fis-this-estimator-biased-geometric-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Let $f$ be a strictly convex function and let $X$ be not constant a.s. Then by Jensen's inequality,
$$mathbb{E}f(X) > f(mathbb{E}X).$$
Taking $f(x) = 1/x$ ($x>0$) and $X=bar{X}$, you get:
$$mathbb{E}left(frac{1}{bar{X}}right)>frac{1}{mathbb{E}bar{X}},$$
so indeed:
$$mathbb{E}left(frac{n}{sum_i X_i}right)>p.$$
add a comment |
Let $f$ be a strictly convex function and let $X$ be not constant a.s. Then by Jensen's inequality,
$$mathbb{E}f(X) > f(mathbb{E}X).$$
Taking $f(x) = 1/x$ ($x>0$) and $X=bar{X}$, you get:
$$mathbb{E}left(frac{1}{bar{X}}right)>frac{1}{mathbb{E}bar{X}},$$
so indeed:
$$mathbb{E}left(frac{n}{sum_i X_i}right)>p.$$
add a comment |
Let $f$ be a strictly convex function and let $X$ be not constant a.s. Then by Jensen's inequality,
$$mathbb{E}f(X) > f(mathbb{E}X).$$
Taking $f(x) = 1/x$ ($x>0$) and $X=bar{X}$, you get:
$$mathbb{E}left(frac{1}{bar{X}}right)>frac{1}{mathbb{E}bar{X}},$$
so indeed:
$$mathbb{E}left(frac{n}{sum_i X_i}right)>p.$$
Let $f$ be a strictly convex function and let $X$ be not constant a.s. Then by Jensen's inequality,
$$mathbb{E}f(X) > f(mathbb{E}X).$$
Taking $f(x) = 1/x$ ($x>0$) and $X=bar{X}$, you get:
$$mathbb{E}left(frac{1}{bar{X}}right)>frac{1}{mathbb{E}bar{X}},$$
so indeed:
$$mathbb{E}left(frac{n}{sum_i X_i}right)>p.$$
answered Dec 31 '18 at 21:30
LinAlgLinAlg
8,7911521
8,7911521
add a comment |
add a comment |
For consistency of the estimator, note that since the $X_i$ are i.i.d, we have by the SLLN, that
$$
hat {p}=frac{1}{sum_{i=1}^nX_i/n}stackrel{text{a.s}}{to}frac{1}{EX_1}=frac{1}{1/p}=p
$$
whence the estimator is (strongly) consistent.
add a comment |
For consistency of the estimator, note that since the $X_i$ are i.i.d, we have by the SLLN, that
$$
hat {p}=frac{1}{sum_{i=1}^nX_i/n}stackrel{text{a.s}}{to}frac{1}{EX_1}=frac{1}{1/p}=p
$$
whence the estimator is (strongly) consistent.
add a comment |
For consistency of the estimator, note that since the $X_i$ are i.i.d, we have by the SLLN, that
$$
hat {p}=frac{1}{sum_{i=1}^nX_i/n}stackrel{text{a.s}}{to}frac{1}{EX_1}=frac{1}{1/p}=p
$$
whence the estimator is (strongly) consistent.
For consistency of the estimator, note that since the $X_i$ are i.i.d, we have by the SLLN, that
$$
hat {p}=frac{1}{sum_{i=1}^nX_i/n}stackrel{text{a.s}}{to}frac{1}{EX_1}=frac{1}{1/p}=p
$$
whence the estimator is (strongly) consistent.
answered Dec 23 '18 at 18:17
Foobaz JohnFoobaz John
21.5k41351
21.5k41351
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3050561%2fis-this-estimator-biased-geometric-distribution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
