Problem on exact sequences












0












$begingroup$


Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.



We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Shall I choose $M=A$, the commutative ring?
    $endgroup$
    – Anupam
    Jan 1 at 12:11










  • $begingroup$
    Yes, exactly$ $.
    $endgroup$
    – Bernard
    Jan 1 at 12:38
















0












$begingroup$


Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.



We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Shall I choose $M=A$, the commutative ring?
    $endgroup$
    – Anupam
    Jan 1 at 12:11










  • $begingroup$
    Yes, exactly$ $.
    $endgroup$
    – Bernard
    Jan 1 at 12:38














0












0








0





$begingroup$


Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.



We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.










share|cite|improve this question











$endgroup$




Let for all $A$-modules $M$, $0rightarrow operatorname{Hom}(M,N^{prime})xrightarrow{overline{f}}operatorname{Hom}(M,N)xrightarrow{overline{g}}operatorname{Hom}(M,N^{primeprime})$ be exact. Thus $overline{f}$ is injective and $ker(overline{g})=operatorname{im}(overline{f})$.



We want to show that $0rightarrow N^{prime}xrightarrow{f}Nxrightarrow{g}N^{primeprime}$ is an exact sequence. Let $M=N^{prime}/ker(f)$. If I can prove $N^{prime}cong M$, then $f$ will be one-one. But how to show that? Any hint will be appreciated.







commutative-algebra modules exact-sequence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 12:34









Bernard

119k639112




119k639112










asked Jan 1 at 12:02









AnupamAnupam

2,3841824




2,3841824












  • $begingroup$
    Shall I choose $M=A$, the commutative ring?
    $endgroup$
    – Anupam
    Jan 1 at 12:11










  • $begingroup$
    Yes, exactly$ $.
    $endgroup$
    – Bernard
    Jan 1 at 12:38


















  • $begingroup$
    Shall I choose $M=A$, the commutative ring?
    $endgroup$
    – Anupam
    Jan 1 at 12:11










  • $begingroup$
    Yes, exactly$ $.
    $endgroup$
    – Bernard
    Jan 1 at 12:38
















$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11




$begingroup$
Shall I choose $M=A$, the commutative ring?
$endgroup$
– Anupam
Jan 1 at 12:11












$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38




$begingroup$
Yes, exactly$ $.
$endgroup$
– Bernard
Jan 1 at 12:38










1 Answer
1






active

oldest

votes


















1












$begingroup$

Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058430%2fproblem-on-exact-sequences%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.






        share|cite|improve this answer









        $endgroup$



        Take $M=A$. Now, $mbox{Hom}left( A,Nright)simeq N$, $mbox{Hom}left( A,N'right)simeq N'$, $mbox{Hom}left( A,N''right)simeq N''$. Now, by diagram chasing, you get that $0to N'to Nto N''$ is exact.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 1 at 15:37









        José Alejandro Aburto AranedaJosé Alejandro Aburto Araneda

        825110




        825110






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058430%2fproblem-on-exact-sequences%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]