Laplace transform of square root of a trigonometric function
$begingroup$
Need help with this question from my university paper.
My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$
I do know how to solve $sqrt{1 + sin(t)}$
By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$
Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$
But I'm a bit confused about the above question.
Thanks in advance.
trigonometry laplace-transform
$endgroup$
add a comment |
$begingroup$
Need help with this question from my university paper.
My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$
I do know how to solve $sqrt{1 + sin(t)}$
By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$
Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$
But I'm a bit confused about the above question.
Thanks in advance.
trigonometry laplace-transform
$endgroup$
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08
add a comment |
$begingroup$
Need help with this question from my university paper.
My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$
I do know how to solve $sqrt{1 + sin(t)}$
By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$
Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$
But I'm a bit confused about the above question.
Thanks in advance.
trigonometry laplace-transform
$endgroup$
Need help with this question from my university paper.
My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$
I do know how to solve $sqrt{1 + sin(t)}$
By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$
Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$
But I'm a bit confused about the above question.
Thanks in advance.
trigonometry laplace-transform
trigonometry laplace-transform
edited Jan 1 at 14:31
Moo
5,53131020
5,53131020
asked Jan 1 at 11:14
Tapan LathiyaTapan Lathiya
84
84
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08
add a comment |
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as
$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$
Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.
$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$
These integrals can be done by considering the integral
$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$
and summing the real and imaginary contributions. One should then obtain
$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$
For $a = 4$, we have
$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$
$endgroup$
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
add a comment |
$begingroup$
With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$
Mathematica code:
HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm
For $a=4$:
(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))
$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$
$endgroup$
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058396%2flaplace-transform-of-square-root-of-a-trigonometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as
$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$
Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.
$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$
These integrals can be done by considering the integral
$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$
and summing the real and imaginary contributions. One should then obtain
$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$
For $a = 4$, we have
$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$
$endgroup$
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
add a comment |
$begingroup$
The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as
$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$
Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.
$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$
These integrals can be done by considering the integral
$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$
and summing the real and imaginary contributions. One should then obtain
$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$
For $a = 4$, we have
$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$
$endgroup$
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
add a comment |
$begingroup$
The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as
$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$
Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.
$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$
These integrals can be done by considering the integral
$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$
and summing the real and imaginary contributions. One should then obtain
$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$
For $a = 4$, we have
$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$
$endgroup$
The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as
$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$
Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.
$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$
These integrals can be done by considering the integral
$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$
and summing the real and imaginary contributions. One should then obtain
$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$
For $a = 4$, we have
$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$
answered Jan 1 at 18:36
IninterrompueIninterrompue
63519
63519
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
add a comment |
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32
add a comment |
$begingroup$
With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$
Mathematica code:
HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm
For $a=4$:
(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))
$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$
$endgroup$
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
add a comment |
$begingroup$
With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$
Mathematica code:
HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm
For $a=4$:
(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))
$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$
$endgroup$
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
add a comment |
$begingroup$
With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$
Mathematica code:
HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm
For $a=4$:
(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))
$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$
$endgroup$
With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$
Mathematica code:
HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm
For $a=4$:
(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))
$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$
edited Jan 1 at 13:46
answered Jan 1 at 12:48
Mariusz IwaniukMariusz Iwaniuk
1,9721718
1,9721718
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
add a comment |
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058396%2flaplace-transform-of-square-root-of-a-trigonometric-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39
$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08