Laplace transform of square root of a trigonometric function












1












$begingroup$


Need help with this question from my university paper.






My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$




I do know how to solve $sqrt{1 + sin(t)}$





By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$





Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$





But I'm a bit confused about the above question.



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @MariuszIwaniuk You're right, thanks!
    $endgroup$
    – caverac
    Jan 1 at 12:39










  • $begingroup$
    If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
    $endgroup$
    – Maxim
    Jan 2 at 3:08
















1












$begingroup$


Need help with this question from my university paper.






My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$




I do know how to solve $sqrt{1 + sin(t)}$





By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$





Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$





But I'm a bit confused about the above question.



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    @MariuszIwaniuk You're right, thanks!
    $endgroup$
    – caverac
    Jan 1 at 12:39










  • $begingroup$
    If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
    $endgroup$
    – Maxim
    Jan 2 at 3:08














1












1








1


0



$begingroup$


Need help with this question from my university paper.






My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$




I do know how to solve $sqrt{1 + sin(t)}$





By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$





Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$





But I'm a bit confused about the above question.



Thanks in advance.










share|cite|improve this question











$endgroup$




Need help with this question from my university paper.






My question : Find Laplace Transform of the following: $sqrt{1 + sin(4t)}$




I do know how to solve $sqrt{1 + sin(t)}$





By taking $1 = sin^2 left(frac{t}{2}right) + cos^2 left(frac{t}{2}right)$





Further taking $sin(t) = 2sin left(frac{t}{2}right) cos left(frac{t}{2}right)$





But I'm a bit confused about the above question.



Thanks in advance.







trigonometry laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 1 at 14:31









Moo

5,53131020




5,53131020










asked Jan 1 at 11:14









Tapan LathiyaTapan Lathiya

84




84












  • $begingroup$
    @MariuszIwaniuk You're right, thanks!
    $endgroup$
    – caverac
    Jan 1 at 12:39










  • $begingroup$
    If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
    $endgroup$
    – Maxim
    Jan 2 at 3:08


















  • $begingroup$
    @MariuszIwaniuk You're right, thanks!
    $endgroup$
    – caverac
    Jan 1 at 12:39










  • $begingroup$
    If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
    $endgroup$
    – Maxim
    Jan 2 at 3:08
















$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39




$begingroup$
@MariuszIwaniuk You're right, thanks!
$endgroup$
– caverac
Jan 1 at 12:39












$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08




$begingroup$
If you know that the transform of $sqrt{1 + sin t}$ is $F(s)$, then $sqrt{1 + sin 4 t}$ gives $F(s/4)/4$.
$endgroup$
– Maxim
Jan 2 at 3:08










2 Answers
2






active

oldest

votes


















2












$begingroup$

The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as



$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$



Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.



$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$



These integrals can be done by considering the integral



$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$



and summing the real and imaginary contributions. One should then obtain



$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$



For $a = 4$, we have



$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Beautiful solution, Thanks :)
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 20:58










  • $begingroup$
    I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
    $endgroup$
    – bjcolby15
    Jan 1 at 21:32



















0












$begingroup$

With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$



Mathematica code:



HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm


For $a=4$:



(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))



$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 12:57










  • $begingroup$
    @TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 13:02











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058396%2flaplace-transform-of-square-root-of-a-trigonometric-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as



$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$



Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.



$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$



These integrals can be done by considering the integral



$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$



and summing the real and imaginary contributions. One should then obtain



$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$



For $a = 4$, we have



$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Beautiful solution, Thanks :)
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 20:58










  • $begingroup$
    I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
    $endgroup$
    – bjcolby15
    Jan 1 at 21:32
















2












$begingroup$

The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as



$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$



Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.



$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$



These integrals can be done by considering the integral



$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$



and summing the real and imaginary contributions. One should then obtain



$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$



For $a = 4$, we have



$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Beautiful solution, Thanks :)
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 20:58










  • $begingroup$
    I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
    $endgroup$
    – bjcolby15
    Jan 1 at 21:32














2












2








2





$begingroup$

The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as



$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$



Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.



$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$



These integrals can be done by considering the integral



$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$



and summing the real and imaginary contributions. One should then obtain



$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$



For $a = 4$, we have



$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$






share|cite|improve this answer









$endgroup$



The function $sqrt{1+sin at}$ is periodic with period $T = 2pi/a$ and the first zero at $3pi/2a$. Following your steps, we can write this as



$$ sqrt{1+sin at} = sqrt{cos^{2}frac{at}{2} + sin^{2}frac{at}{2} + 2sinfrac{at}{2}cosfrac{at}{2}} = left|cosfrac{at}{2}+sinfrac{at}{2}right|. $$



Using the Laplace transform of a periodic function, we split the integral into two pieces. This is necessary because of the absolute value sign. To get rid of it in the region $[3pi/2a, 2pi/a]$, we have to take the negative of the function.



$$begin{aligned} I &= int_{0}^{infty}sqrt{1+sin at},e^{-st},mathrm{d}t = frac{1}{1-e^{-2pi s/a}}int_{0}^{2pi/a}left|cosfrac{at}{2} + sinfrac{at}{2}right|e^{-st},mathrm{d}t \
&= frac{1}{1-e^{-2pi s/a}}left[int_{0}^{3pi/2a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t - int_{3pi/2a}^{2pi/a}left(cosfrac{at}{2} + sinfrac{at}{2}right)e^{-st},mathrm{d}t right]end{aligned}$$



These integrals can be done by considering the integral



$$ int_{0}^{3pi/2a}e^{iat/2}e^{-st},mathrm{d}t $$



and summing the real and imaginary contributions. One should then obtain



$$ mathcal{L}[sqrt{1+sin at}] = frac{1}{s^{2}+a^{2}/4}left(s + frac{a}{2} + frac{sqrt{2},ae^{-3pi s/2a}}{1-e^{-2pi s/a}}right). $$



For $a = 4$, we have



$$ boxed{mathcal{L}[sqrt{1+sin 4t}] = frac{1}{s^{2}+4}left(s + 2 + frac{4sqrt{2},e^{-3pi s/8}}{1-e^{-pi s/2}}right)}.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 1 at 18:36









IninterrompueIninterrompue

63519




63519












  • $begingroup$
    Beautiful solution, Thanks :)
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 20:58










  • $begingroup$
    I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
    $endgroup$
    – bjcolby15
    Jan 1 at 21:32


















  • $begingroup$
    Beautiful solution, Thanks :)
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 20:58










  • $begingroup$
    I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
    $endgroup$
    – bjcolby15
    Jan 1 at 21:32
















$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58




$begingroup$
Beautiful solution, Thanks :)
$endgroup$
– Tapan Lathiya
Jan 1 at 20:58












$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32




$begingroup$
I was thinking along the lines of convolution, but wow, that solution is quite neat and compact. Great job!
$endgroup$
– bjcolby15
Jan 1 at 21:32











0












$begingroup$

With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$



Mathematica code:



HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm


For $a=4$:



(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))



$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 12:57










  • $begingroup$
    @TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 13:02
















0












$begingroup$

With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$



Mathematica code:



HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm


For $a=4$:



(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))



$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 12:57










  • $begingroup$
    @TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 13:02














0












0








0





$begingroup$

With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$



Mathematica code:



HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm


For $a=4$:



(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))



$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$







share|cite|improve this answer











$endgroup$



With CAS help and for general $a$ and $aneq 0$ we have:
$mathcal{L}_tleft[sqrt{1+sin (a t)}right](s)=frac{e^{-frac{pi s}{2 a}} left(-a left(sqrt{2}-2 cosh left(frac{pi s}{2
a}right)right)+frac{left(a^2+4 s^2right) cosh left(frac{pi s}{2 a}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{2
a},1+frac{i s}{2 a};1right)}{s}right) left(1+tanh left(frac{pi s}{2 a}right)right)}{a^2+4 s^2}$



Mathematica code:



HoldForm[LaplaceTransform[Sqrt[1 + Sin[a t]], t, s] == (E^(-(([Pi] s)/(
2 a))) (-a (Sqrt[2] - 2 Cosh[([Pi] s)/(2 a)]) + ((a^2 +
4 s^2) Cosh[([Pi] s)/(
2 a)] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/(2 a),
1 + (I s)/(2 a)}, 1])/s) (1 + Tanh[([Pi] s)/(2 a)]))/(
a^2 + 4 s^2)] // TeXForm


For $a=4$:



(E^(-(([Pi] s)/8)) (-s (Sqrt[2] - 2 Cosh[([Pi] s)/8]) + (4 + s^2) Cosh[([Pi] s)/
8] HypergeometricPFQ[{-(1/4), 1/4, 1}, {1 - (I s)/8,
1 + (I s)/8}, 1]) (1 + Tanh[([Pi] s)/8]))/(s (4 + s^2))



$mathcal{L}_tleft[sqrt{1+sin (4 t)}right](s)=frac{e^{-frac{1}{8} (pi s)} left(-s left(sqrt{2}-2 cosh left(frac{pi
s}{8}right)right)+left(4+s^2right) cosh left(frac{pi s}{8}right) , _3F_2left(-frac{1}{4},frac{1}{4},1;1-frac{i s}{8},1+frac{i
s}{8};1right)right) left(1+tanh left(frac{pi s}{8}right)right)}{s left(4+s^2right)}$








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 1 at 13:46

























answered Jan 1 at 12:48









Mariusz IwaniukMariusz Iwaniuk

1,9721718




1,9721718












  • $begingroup$
    Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 12:57










  • $begingroup$
    @TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 13:02


















  • $begingroup$
    Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
    $endgroup$
    – Tapan Lathiya
    Jan 1 at 12:57










  • $begingroup$
    @TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
    $endgroup$
    – Mariusz Iwaniuk
    Jan 1 at 13:02
















$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57




$begingroup$
Thanks for the answer. Is there any way to get rid of the square root? If so then it will be much easier to solve it further.
$endgroup$
– Tapan Lathiya
Jan 1 at 12:57












$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02




$begingroup$
@TapanLathiya Possible,yes,maybe so: $sqrt{1+sin (a t)}=sum _{j=0}^{infty } frac{left((-1)^{1+j} 4^{-j} (2 j)!right) sin ^j(a t)}{(-1+2 j) (j!)^2}$ or another way.
$endgroup$
– Mariusz Iwaniuk
Jan 1 at 13:02


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058396%2flaplace-transform-of-square-root-of-a-trigonometric-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]