Properties of Inverse Lambert W function
$begingroup$
Starting with the two-branched Lambert W function (from Wikipedia):
Suppose we just flip it like this:
Is there a single power series for this $y=W^{-1}(x)$?
special-functions
$endgroup$
add a comment |
$begingroup$
Starting with the two-branched Lambert W function (from Wikipedia):
Suppose we just flip it like this:
Is there a single power series for this $y=W^{-1}(x)$?
special-functions
$endgroup$
add a comment |
$begingroup$
Starting with the two-branched Lambert W function (from Wikipedia):
Suppose we just flip it like this:
Is there a single power series for this $y=W^{-1}(x)$?
special-functions
$endgroup$
Starting with the two-branched Lambert W function (from Wikipedia):
Suppose we just flip it like this:
Is there a single power series for this $y=W^{-1}(x)$?
special-functions
special-functions
edited Jan 1 at 10:46
Glorfindel
3,41981830
3,41981830
asked Aug 14 '11 at 22:01
deoxygerbedeoxygerbe
3,06711736
3,06711736
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Lambert W function, $y=W(x)$ is a solution for $y mathrm{e}^y = x$. Hence $W^{-1}(y) = y mathrm{e}^y$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f57466%2fproperties-of-inverse-lambert-w-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Lambert W function, $y=W(x)$ is a solution for $y mathrm{e}^y = x$. Hence $W^{-1}(y) = y mathrm{e}^y$.
$endgroup$
add a comment |
$begingroup$
Lambert W function, $y=W(x)$ is a solution for $y mathrm{e}^y = x$. Hence $W^{-1}(y) = y mathrm{e}^y$.
$endgroup$
add a comment |
$begingroup$
Lambert W function, $y=W(x)$ is a solution for $y mathrm{e}^y = x$. Hence $W^{-1}(y) = y mathrm{e}^y$.
$endgroup$
Lambert W function, $y=W(x)$ is a solution for $y mathrm{e}^y = x$. Hence $W^{-1}(y) = y mathrm{e}^y$.
answered Aug 14 '11 at 22:15
SashaSasha
60.5k5107179
60.5k5107179
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f57466%2fproperties-of-inverse-lambert-w-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown