Prove that $ B_{n}(x)=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}$ converges...












1












$begingroup$


Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by



begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$



MY WORK



Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,



begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$



QUESTION:



The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
    $endgroup$
    – Jakobian
    Dec 31 '18 at 17:39


















1












$begingroup$


Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by



begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$



MY WORK



Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,



begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$



QUESTION:



The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
    $endgroup$
    – Jakobian
    Dec 31 '18 at 17:39
















1












1








1


1



$begingroup$


Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by



begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$



MY WORK



Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,



begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$



QUESTION:



The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?










share|cite|improve this question











$endgroup$




Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by



begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$



MY WORK



Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,



begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$



QUESTION:



The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?







real-analysis sequences-and-series analysis uniform-convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 19:59







Omojola Micheal

















asked Dec 31 '18 at 17:23









Omojola MichealOmojola Micheal

1,749324




1,749324












  • $begingroup$
    Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
    $endgroup$
    – Jakobian
    Dec 31 '18 at 17:39




















  • $begingroup$
    Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
    $endgroup$
    – Jakobian
    Dec 31 '18 at 17:39


















$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39






$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39












2 Answers
2






active

oldest

votes


















1












$begingroup$

No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
    $endgroup$
    – Omojola Micheal
    Dec 31 '18 at 19:56





















1












$begingroup$

Happy New Year! Credits to Jakobian



begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057879%2fprove-that-b-nx-sum-infty-k-0-dfrac-1kknk-left-dfrac%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
      $endgroup$
      – Omojola Micheal
      Dec 31 '18 at 19:56


















    1












    $begingroup$

    No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
      $endgroup$
      – Omojola Micheal
      Dec 31 '18 at 19:56
















    1












    1








    1





    $begingroup$

    No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.






    share|cite|improve this answer









    $endgroup$



    No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 31 '18 at 17:28









    José Carlos SantosJosé Carlos Santos

    153k22123225




    153k22123225












    • $begingroup$
      (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
      $endgroup$
      – Omojola Micheal
      Dec 31 '18 at 19:56




















    • $begingroup$
      (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
      $endgroup$
      – Omojola Micheal
      Dec 31 '18 at 19:56


















    $begingroup$
    (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
    $endgroup$
    – Omojola Micheal
    Dec 31 '18 at 19:56






    $begingroup$
    (+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
    $endgroup$
    – Omojola Micheal
    Dec 31 '18 at 19:56













    1












    $begingroup$

    Happy New Year! Credits to Jakobian



    begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
    Since,
    begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
    Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
    begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
    converges uniformly on any $[a,b]subseteq Bbb{R}$






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Happy New Year! Credits to Jakobian



      begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
      Since,
      begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
      Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
      begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
      converges uniformly on any $[a,b]subseteq Bbb{R}$






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Happy New Year! Credits to Jakobian



        begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
        Since,
        begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
        Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
        begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
        converges uniformly on any $[a,b]subseteq Bbb{R}$






        share|cite|improve this answer











        $endgroup$



        Happy New Year! Credits to Jakobian



        begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
        Since,
        begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
        Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
        begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
        converges uniformly on any $[a,b]subseteq Bbb{R}$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 1 at 0:29

























        answered Dec 31 '18 at 23:54









        Omojola MichealOmojola Micheal

        1,749324




        1,749324






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057879%2fprove-that-b-nx-sum-infty-k-0-dfrac-1kknk-left-dfrac%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith