Prove that $ B_{n}(x)=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}$ converges...
$begingroup$
Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$
MY WORK
Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$
QUESTION:
The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?
real-analysis sequences-and-series analysis uniform-convergence
$endgroup$
add a comment |
$begingroup$
Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$
MY WORK
Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$
QUESTION:
The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?
real-analysis sequences-and-series analysis uniform-convergence
$endgroup$
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39
add a comment |
$begingroup$
Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$
MY WORK
Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$
QUESTION:
The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?
real-analysis sequences-and-series analysis uniform-convergence
$endgroup$
Let $ngeq 0,$ be a fixed. The Bessel function of order $n$ is the function defined by
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
I want to prove that $B_{n}(x)$ converges uniformly on any closed interval $[a,b]subseteq Bbb{R}.$
MY WORK
Let $[a,b]subseteq Bbb{R}$ be arbitrary, $xin [a,b]$ and $nin Bbb{N}$ be fixed. Then,
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq left( dfrac{left| xright|} {2}right)^{n+2k}leq left(dfrac{c}{2}right)^{n+2k}.end{align}
where $c=max{|a|,|b|}.$ Now,
begin{align} sum^{infty}_{k=0} left(dfrac{c}{2}right)^{n+2k} =left(dfrac{c}{2}right)^{n}sum^{infty}_{k=0} left(dfrac{c}{2}right)^{2k} =left(dfrac{c}{2}right)^{n} left(dfrac{4}{4-c^2}right)<infty,;;text{where};;c<2.end{align}
Hence,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on $[a,b]subseteq Bbb{R}$ with $c<2.$
QUESTION:
The question asks for a proof for any closed interval of $ Bbb{R}.$ With what I have, it only works when $c<2.$ What happens when $cgeq 2$? Or I'm I missing something in the proof?
real-analysis sequences-and-series analysis uniform-convergence
real-analysis sequences-and-series analysis uniform-convergence
edited Dec 31 '18 at 19:59
Omojola Micheal
asked Dec 31 '18 at 17:23


Omojola MichealOmojola Micheal
1,749324
1,749324
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39
add a comment |
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.
$endgroup$
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
add a comment |
$begingroup$
Happy New Year! Credits to Jakobian
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057879%2fprove-that-b-nx-sum-infty-k-0-dfrac-1kknk-left-dfrac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.
$endgroup$
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
add a comment |
$begingroup$
No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.
$endgroup$
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
add a comment |
$begingroup$
No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.
$endgroup$
No, your proof surely does not work for all intervals $[a,b]$ of $mathbb R$. It only works for those intervals $[a,b]$ such that $lvert arvert,lvert brvert<2$.
answered Dec 31 '18 at 17:28


José Carlos SantosJosé Carlos Santos
153k22123225
153k22123225
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
add a comment |
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
$begingroup$
(+1) Sorry, I asked a wrong question. I've edited it. So, how do I make it work for all intervals of the kind $[a,b]$? Any hint?
$endgroup$
– Omojola Micheal
Dec 31 '18 at 19:56
add a comment |
$begingroup$
Happy New Year! Credits to Jakobian
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$
$endgroup$
add a comment |
$begingroup$
Happy New Year! Credits to Jakobian
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$
$endgroup$
add a comment |
$begingroup$
Happy New Year! Credits to Jakobian
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$
$endgroup$
Happy New Year! Credits to Jakobian
begin{align} left| dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k}right|leq dfrac{1} {k!}left( dfrac{left| xright|} {2}right)^{n+2k}leq dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}.end{align}
Since,
begin{align} limlimits_{ktoinfty}left|dfrac{k!} {(k+1)!}left(dfrac{c}{2}right)^{n+2k+2} left(dfrac{2}{c}right)^{n+2k} right|&=limlimits_{ktoinfty}left|dfrac{1} {(k+1)}left(dfrac{c}{2}right)^{2} right|\&=dfrac{c^2}{4}limlimits_{ktoinfty}dfrac{1} {(k+1)} \&=0<1end{align}
Thus, $sum^{infty}_{k=0} dfrac{1} {k!}left(dfrac{c}{2}right)^{n+2k}$ converges by D'Alembert's Ratio test and so,
begin{align} B_{n}(x):=sum^{infty}_{k=0} dfrac{(-1)^k}{k!(n+k)!} left(dfrac{x}{2}right)^{n+2k} .end{align}
converges uniformly on any $[a,b]subseteq Bbb{R}$
edited Jan 1 at 0:29
answered Dec 31 '18 at 23:54


Omojola MichealOmojola Micheal
1,749324
1,749324
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057879%2fprove-that-b-nx-sum-infty-k-0-dfrac-1kknk-left-dfrac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your estimation was too big. Try this one $left|frac{(-1)^k}{k!(n+k)!}left(frac{x}{2}right)^{n+2k}right|leq frac{(c/2)^{n+2k}}{k!} $
$endgroup$
– Jakobian
Dec 31 '18 at 17:39