Solving $e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$ for $x$












3












$begingroup$


I need help with solving this difficult fluid dynamic expression. I have tried using rules of logs, symbolab algebra calculator and Wolfram Alpha calculator, and I have got no solution.




How would you solve the following expression for $x$?
$$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$




When solving this numerically, the solution is: $x=2.2418sqrt{vt}$





I want to know how you could solve the first expression to get the solution. So could someone please provide a step-by-step solution please?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:05






  • 1




    $begingroup$
    The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:06










  • $begingroup$
    Would you have to use use the Newton-Raphson formula?
    $endgroup$
    – Alan Glenn
    Jan 3 at 2:30






  • 1




    $begingroup$
    x = 0 is a solution.
    $endgroup$
    – William Elliot
    Jan 3 at 2:54










  • $begingroup$
    What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
    $endgroup$
    – DavidG
    Jan 3 at 3:54
















3












$begingroup$


I need help with solving this difficult fluid dynamic expression. I have tried using rules of logs, symbolab algebra calculator and Wolfram Alpha calculator, and I have got no solution.




How would you solve the following expression for $x$?
$$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$




When solving this numerically, the solution is: $x=2.2418sqrt{vt}$





I want to know how you could solve the first expression to get the solution. So could someone please provide a step-by-step solution please?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:05






  • 1




    $begingroup$
    The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:06










  • $begingroup$
    Would you have to use use the Newton-Raphson formula?
    $endgroup$
    – Alan Glenn
    Jan 3 at 2:30






  • 1




    $begingroup$
    x = 0 is a solution.
    $endgroup$
    – William Elliot
    Jan 3 at 2:54










  • $begingroup$
    What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
    $endgroup$
    – DavidG
    Jan 3 at 3:54














3












3








3


2



$begingroup$


I need help with solving this difficult fluid dynamic expression. I have tried using rules of logs, symbolab algebra calculator and Wolfram Alpha calculator, and I have got no solution.




How would you solve the following expression for $x$?
$$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$




When solving this numerically, the solution is: $x=2.2418sqrt{vt}$





I want to know how you could solve the first expression to get the solution. So could someone please provide a step-by-step solution please?










share|cite|improve this question











$endgroup$




I need help with solving this difficult fluid dynamic expression. I have tried using rules of logs, symbolab algebra calculator and Wolfram Alpha calculator, and I have got no solution.




How would you solve the following expression for $x$?
$$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$




When solving this numerically, the solution is: $x=2.2418sqrt{vt}$





I want to know how you could solve the first expression to get the solution. So could someone please provide a step-by-step solution please?







algebra-precalculus exponential-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 3 at 7:28









dmtri

1,4522521




1,4522521










asked Jan 3 at 1:59









Alan GlennAlan Glenn

253




253








  • 1




    $begingroup$
    If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:05






  • 1




    $begingroup$
    The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:06










  • $begingroup$
    Would you have to use use the Newton-Raphson formula?
    $endgroup$
    – Alan Glenn
    Jan 3 at 2:30






  • 1




    $begingroup$
    x = 0 is a solution.
    $endgroup$
    – William Elliot
    Jan 3 at 2:54










  • $begingroup$
    What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
    $endgroup$
    – DavidG
    Jan 3 at 3:54














  • 1




    $begingroup$
    If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:05






  • 1




    $begingroup$
    The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
    $endgroup$
    – Eevee Trainer
    Jan 3 at 2:06










  • $begingroup$
    Would you have to use use the Newton-Raphson formula?
    $endgroup$
    – Alan Glenn
    Jan 3 at 2:30






  • 1




    $begingroup$
    x = 0 is a solution.
    $endgroup$
    – William Elliot
    Jan 3 at 2:54










  • $begingroup$
    What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
    $endgroup$
    – DavidG
    Jan 3 at 3:54








1




1




$begingroup$
If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
$endgroup$
– Eevee Trainer
Jan 3 at 2:05




$begingroup$
If you move everything to one side and ask Wolfram Alpha, you get a rather nasty-looking result involving the Lambert W function: wolframalpha.com/input/…
$endgroup$
– Eevee Trainer
Jan 3 at 2:05




1




1




$begingroup$
The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
$endgroup$
– Eevee Trainer
Jan 3 at 2:06




$begingroup$
The expression you get is also much nastier than the numeric solution, so I think solving for $x$ might not be the way to go, because of how nontrivial it is.
$endgroup$
– Eevee Trainer
Jan 3 at 2:06












$begingroup$
Would you have to use use the Newton-Raphson formula?
$endgroup$
– Alan Glenn
Jan 3 at 2:30




$begingroup$
Would you have to use use the Newton-Raphson formula?
$endgroup$
– Alan Glenn
Jan 3 at 2:30




1




1




$begingroup$
x = 0 is a solution.
$endgroup$
– William Elliot
Jan 3 at 2:54




$begingroup$
x = 0 is a solution.
$endgroup$
– William Elliot
Jan 3 at 2:54












$begingroup$
What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
$endgroup$
– DavidG
Jan 3 at 3:54




$begingroup$
What are the parameter values for $v$,$t$? Looks like it could be a perturbation problem if $v t $ is large.
$endgroup$
– DavidG
Jan 3 at 3:54










2 Answers
2






active

oldest

votes


















5












$begingroup$

$$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$
Let $y=frac{x^2}{4vt}$
$$e^y=1+2y$$
$$e^{-y}=frac{1}{1+2y}$$
$$(1+2y)e^{-y}=1$$
$$(frac12+y)e^{-y}=frac12$$
$$(-frac12-y)e^{-y}=-frac12$$
$$ (-frac12-y)e^{-y}e^{-frac12}=-frac12 e^{-frac12}$$
$$ (-frac12-y)e^{-frac12-y}=-frac12 e^{-frac12}=-frac{1}{2sqrt{e}}$$
$X=(-frac12-y)$
$$Xe^X=-frac{1}{2sqrt{e}}$$
From the definition of the Lambert W function : http://mathworld.wolfram.com/LambertW-Function.html
$$X=Wleft(-frac{1}{2sqrt{e}}right)$$
$$y=-frac12-X=-frac12-Wleft(-frac{1}{2sqrt{e}}right)$$
$$x=sqrt{4vty}=sqrt{-2-4Wleft(-frac{1}{2sqrt{e}}right)}sqrt{vt}$$
The Lambert W(z) function is a multi valuated function in $-frac{1}{e} <z<0$ , real $z$.



This is presently the case where $z=-frac{1}{2sqrt{e}}$ since $-frac{1}{e} <-frac{1}{2sqrt{e}}<0$



First root :



$W_0left(-frac{1}{2sqrt{e}}right)=-frac12 quad;quad {-2-4W_0left(-frac{1}{2sqrt{e}}right)}=-2-4(-1/2)=0 quad;quad x=0$



Second root :



$W_{-1}left(-frac{1}{2sqrt{e}}right)simeq -1.756431... $



https://www.wolframalpha.com/input/?i=lambertw(-1,-1%2F(2+sqrt(e)))



One can use series expansion to compute it approximately. See page 13 in https://fr.scribd.com/doc/34977341/Sophomore-s-Dream-Function . The convergence is very slow. See the numerical calculus in the below addition. In practice, it is certainly faster to solve directly $e^y=1+2y$ with Newton-Raphson or similar iterative method.



Finally, an approximate value is :



$$xsimeqsqrt{-2-4(-1.756431)}sqrt{vt}simeq 2.2418128 sqrt{vt}$$



With more digits : https://www.wolframalpha.com/input/?i=sqrt(-2-4+lambertw(-1,-1%2F(2+sqrt(e))))



IN ADDITION :



Example of recursive numerical calculus of $W_{-1}(x)$ in the range $-frac{1}{e}<x<0$



enter image description here






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    As mentioned above, clearly $x=0$ is a solution.



    Also (Mathematica):



    $$x = pm sqrt{2} sqrt{-2 t v W_{-1}left(-frac{1}{2 sqrt{e}}right)-t v}$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Sorry pardon my ignorance, which special function is $W_n(x)$?
      $endgroup$
      – DavidG
      Jan 3 at 3:55






    • 1




      $begingroup$
      The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
      $endgroup$
      – David G. Stork
      Jan 3 at 3:58










    • $begingroup$
      Cheers @David G. Stork
      $endgroup$
      – DavidG
      Jan 3 at 3:59










    • $begingroup$
      How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
      $endgroup$
      – Alan Glenn
      Jan 3 at 4:07












    • $begingroup$
      @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
      $endgroup$
      – David G. Stork
      Jan 3 at 4:15











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060190%2fsolving-e-fracx24vt-1-fracx22vt-for-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    $$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$
    Let $y=frac{x^2}{4vt}$
    $$e^y=1+2y$$
    $$e^{-y}=frac{1}{1+2y}$$
    $$(1+2y)e^{-y}=1$$
    $$(frac12+y)e^{-y}=frac12$$
    $$(-frac12-y)e^{-y}=-frac12$$
    $$ (-frac12-y)e^{-y}e^{-frac12}=-frac12 e^{-frac12}$$
    $$ (-frac12-y)e^{-frac12-y}=-frac12 e^{-frac12}=-frac{1}{2sqrt{e}}$$
    $X=(-frac12-y)$
    $$Xe^X=-frac{1}{2sqrt{e}}$$
    From the definition of the Lambert W function : http://mathworld.wolfram.com/LambertW-Function.html
    $$X=Wleft(-frac{1}{2sqrt{e}}right)$$
    $$y=-frac12-X=-frac12-Wleft(-frac{1}{2sqrt{e}}right)$$
    $$x=sqrt{4vty}=sqrt{-2-4Wleft(-frac{1}{2sqrt{e}}right)}sqrt{vt}$$
    The Lambert W(z) function is a multi valuated function in $-frac{1}{e} <z<0$ , real $z$.



    This is presently the case where $z=-frac{1}{2sqrt{e}}$ since $-frac{1}{e} <-frac{1}{2sqrt{e}}<0$



    First root :



    $W_0left(-frac{1}{2sqrt{e}}right)=-frac12 quad;quad {-2-4W_0left(-frac{1}{2sqrt{e}}right)}=-2-4(-1/2)=0 quad;quad x=0$



    Second root :



    $W_{-1}left(-frac{1}{2sqrt{e}}right)simeq -1.756431... $



    https://www.wolframalpha.com/input/?i=lambertw(-1,-1%2F(2+sqrt(e)))



    One can use series expansion to compute it approximately. See page 13 in https://fr.scribd.com/doc/34977341/Sophomore-s-Dream-Function . The convergence is very slow. See the numerical calculus in the below addition. In practice, it is certainly faster to solve directly $e^y=1+2y$ with Newton-Raphson or similar iterative method.



    Finally, an approximate value is :



    $$xsimeqsqrt{-2-4(-1.756431)}sqrt{vt}simeq 2.2418128 sqrt{vt}$$



    With more digits : https://www.wolframalpha.com/input/?i=sqrt(-2-4+lambertw(-1,-1%2F(2+sqrt(e))))



    IN ADDITION :



    Example of recursive numerical calculus of $W_{-1}(x)$ in the range $-frac{1}{e}<x<0$



    enter image description here






    share|cite|improve this answer











    $endgroup$


















      5












      $begingroup$

      $$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$
      Let $y=frac{x^2}{4vt}$
      $$e^y=1+2y$$
      $$e^{-y}=frac{1}{1+2y}$$
      $$(1+2y)e^{-y}=1$$
      $$(frac12+y)e^{-y}=frac12$$
      $$(-frac12-y)e^{-y}=-frac12$$
      $$ (-frac12-y)e^{-y}e^{-frac12}=-frac12 e^{-frac12}$$
      $$ (-frac12-y)e^{-frac12-y}=-frac12 e^{-frac12}=-frac{1}{2sqrt{e}}$$
      $X=(-frac12-y)$
      $$Xe^X=-frac{1}{2sqrt{e}}$$
      From the definition of the Lambert W function : http://mathworld.wolfram.com/LambertW-Function.html
      $$X=Wleft(-frac{1}{2sqrt{e}}right)$$
      $$y=-frac12-X=-frac12-Wleft(-frac{1}{2sqrt{e}}right)$$
      $$x=sqrt{4vty}=sqrt{-2-4Wleft(-frac{1}{2sqrt{e}}right)}sqrt{vt}$$
      The Lambert W(z) function is a multi valuated function in $-frac{1}{e} <z<0$ , real $z$.



      This is presently the case where $z=-frac{1}{2sqrt{e}}$ since $-frac{1}{e} <-frac{1}{2sqrt{e}}<0$



      First root :



      $W_0left(-frac{1}{2sqrt{e}}right)=-frac12 quad;quad {-2-4W_0left(-frac{1}{2sqrt{e}}right)}=-2-4(-1/2)=0 quad;quad x=0$



      Second root :



      $W_{-1}left(-frac{1}{2sqrt{e}}right)simeq -1.756431... $



      https://www.wolframalpha.com/input/?i=lambertw(-1,-1%2F(2+sqrt(e)))



      One can use series expansion to compute it approximately. See page 13 in https://fr.scribd.com/doc/34977341/Sophomore-s-Dream-Function . The convergence is very slow. See the numerical calculus in the below addition. In practice, it is certainly faster to solve directly $e^y=1+2y$ with Newton-Raphson or similar iterative method.



      Finally, an approximate value is :



      $$xsimeqsqrt{-2-4(-1.756431)}sqrt{vt}simeq 2.2418128 sqrt{vt}$$



      With more digits : https://www.wolframalpha.com/input/?i=sqrt(-2-4+lambertw(-1,-1%2F(2+sqrt(e))))



      IN ADDITION :



      Example of recursive numerical calculus of $W_{-1}(x)$ in the range $-frac{1}{e}<x<0$



      enter image description here






      share|cite|improve this answer











      $endgroup$
















        5












        5








        5





        $begingroup$

        $$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$
        Let $y=frac{x^2}{4vt}$
        $$e^y=1+2y$$
        $$e^{-y}=frac{1}{1+2y}$$
        $$(1+2y)e^{-y}=1$$
        $$(frac12+y)e^{-y}=frac12$$
        $$(-frac12-y)e^{-y}=-frac12$$
        $$ (-frac12-y)e^{-y}e^{-frac12}=-frac12 e^{-frac12}$$
        $$ (-frac12-y)e^{-frac12-y}=-frac12 e^{-frac12}=-frac{1}{2sqrt{e}}$$
        $X=(-frac12-y)$
        $$Xe^X=-frac{1}{2sqrt{e}}$$
        From the definition of the Lambert W function : http://mathworld.wolfram.com/LambertW-Function.html
        $$X=Wleft(-frac{1}{2sqrt{e}}right)$$
        $$y=-frac12-X=-frac12-Wleft(-frac{1}{2sqrt{e}}right)$$
        $$x=sqrt{4vty}=sqrt{-2-4Wleft(-frac{1}{2sqrt{e}}right)}sqrt{vt}$$
        The Lambert W(z) function is a multi valuated function in $-frac{1}{e} <z<0$ , real $z$.



        This is presently the case where $z=-frac{1}{2sqrt{e}}$ since $-frac{1}{e} <-frac{1}{2sqrt{e}}<0$



        First root :



        $W_0left(-frac{1}{2sqrt{e}}right)=-frac12 quad;quad {-2-4W_0left(-frac{1}{2sqrt{e}}right)}=-2-4(-1/2)=0 quad;quad x=0$



        Second root :



        $W_{-1}left(-frac{1}{2sqrt{e}}right)simeq -1.756431... $



        https://www.wolframalpha.com/input/?i=lambertw(-1,-1%2F(2+sqrt(e)))



        One can use series expansion to compute it approximately. See page 13 in https://fr.scribd.com/doc/34977341/Sophomore-s-Dream-Function . The convergence is very slow. See the numerical calculus in the below addition. In practice, it is certainly faster to solve directly $e^y=1+2y$ with Newton-Raphson or similar iterative method.



        Finally, an approximate value is :



        $$xsimeqsqrt{-2-4(-1.756431)}sqrt{vt}simeq 2.2418128 sqrt{vt}$$



        With more digits : https://www.wolframalpha.com/input/?i=sqrt(-2-4+lambertw(-1,-1%2F(2+sqrt(e))))



        IN ADDITION :



        Example of recursive numerical calculus of $W_{-1}(x)$ in the range $-frac{1}{e}<x<0$



        enter image description here






        share|cite|improve this answer











        $endgroup$



        $$e^{frac{x^2}{4vt}} = 1+frac{x^2}{2vt}$$
        Let $y=frac{x^2}{4vt}$
        $$e^y=1+2y$$
        $$e^{-y}=frac{1}{1+2y}$$
        $$(1+2y)e^{-y}=1$$
        $$(frac12+y)e^{-y}=frac12$$
        $$(-frac12-y)e^{-y}=-frac12$$
        $$ (-frac12-y)e^{-y}e^{-frac12}=-frac12 e^{-frac12}$$
        $$ (-frac12-y)e^{-frac12-y}=-frac12 e^{-frac12}=-frac{1}{2sqrt{e}}$$
        $X=(-frac12-y)$
        $$Xe^X=-frac{1}{2sqrt{e}}$$
        From the definition of the Lambert W function : http://mathworld.wolfram.com/LambertW-Function.html
        $$X=Wleft(-frac{1}{2sqrt{e}}right)$$
        $$y=-frac12-X=-frac12-Wleft(-frac{1}{2sqrt{e}}right)$$
        $$x=sqrt{4vty}=sqrt{-2-4Wleft(-frac{1}{2sqrt{e}}right)}sqrt{vt}$$
        The Lambert W(z) function is a multi valuated function in $-frac{1}{e} <z<0$ , real $z$.



        This is presently the case where $z=-frac{1}{2sqrt{e}}$ since $-frac{1}{e} <-frac{1}{2sqrt{e}}<0$



        First root :



        $W_0left(-frac{1}{2sqrt{e}}right)=-frac12 quad;quad {-2-4W_0left(-frac{1}{2sqrt{e}}right)}=-2-4(-1/2)=0 quad;quad x=0$



        Second root :



        $W_{-1}left(-frac{1}{2sqrt{e}}right)simeq -1.756431... $



        https://www.wolframalpha.com/input/?i=lambertw(-1,-1%2F(2+sqrt(e)))



        One can use series expansion to compute it approximately. See page 13 in https://fr.scribd.com/doc/34977341/Sophomore-s-Dream-Function . The convergence is very slow. See the numerical calculus in the below addition. In practice, it is certainly faster to solve directly $e^y=1+2y$ with Newton-Raphson or similar iterative method.



        Finally, an approximate value is :



        $$xsimeqsqrt{-2-4(-1.756431)}sqrt{vt}simeq 2.2418128 sqrt{vt}$$



        With more digits : https://www.wolframalpha.com/input/?i=sqrt(-2-4+lambertw(-1,-1%2F(2+sqrt(e))))



        IN ADDITION :



        Example of recursive numerical calculus of $W_{-1}(x)$ in the range $-frac{1}{e}<x<0$



        enter image description here







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 3 at 7:45

























        answered Jan 3 at 6:42









        JJacquelinJJacquelin

        43k21751




        43k21751























            1












            $begingroup$

            As mentioned above, clearly $x=0$ is a solution.



            Also (Mathematica):



            $$x = pm sqrt{2} sqrt{-2 t v W_{-1}left(-frac{1}{2 sqrt{e}}right)-t v}$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry pardon my ignorance, which special function is $W_n(x)$?
              $endgroup$
              – DavidG
              Jan 3 at 3:55






            • 1




              $begingroup$
              The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
              $endgroup$
              – David G. Stork
              Jan 3 at 3:58










            • $begingroup$
              Cheers @David G. Stork
              $endgroup$
              – DavidG
              Jan 3 at 3:59










            • $begingroup$
              How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
              $endgroup$
              – Alan Glenn
              Jan 3 at 4:07












            • $begingroup$
              @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
              $endgroup$
              – David G. Stork
              Jan 3 at 4:15
















            1












            $begingroup$

            As mentioned above, clearly $x=0$ is a solution.



            Also (Mathematica):



            $$x = pm sqrt{2} sqrt{-2 t v W_{-1}left(-frac{1}{2 sqrt{e}}right)-t v}$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Sorry pardon my ignorance, which special function is $W_n(x)$?
              $endgroup$
              – DavidG
              Jan 3 at 3:55






            • 1




              $begingroup$
              The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
              $endgroup$
              – David G. Stork
              Jan 3 at 3:58










            • $begingroup$
              Cheers @David G. Stork
              $endgroup$
              – DavidG
              Jan 3 at 3:59










            • $begingroup$
              How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
              $endgroup$
              – Alan Glenn
              Jan 3 at 4:07












            • $begingroup$
              @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
              $endgroup$
              – David G. Stork
              Jan 3 at 4:15














            1












            1








            1





            $begingroup$

            As mentioned above, clearly $x=0$ is a solution.



            Also (Mathematica):



            $$x = pm sqrt{2} sqrt{-2 t v W_{-1}left(-frac{1}{2 sqrt{e}}right)-t v}$$






            share|cite|improve this answer









            $endgroup$



            As mentioned above, clearly $x=0$ is a solution.



            Also (Mathematica):



            $$x = pm sqrt{2} sqrt{-2 t v W_{-1}left(-frac{1}{2 sqrt{e}}right)-t v}$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 3 at 2:59









            David G. StorkDavid G. Stork

            10.4k21332




            10.4k21332












            • $begingroup$
              Sorry pardon my ignorance, which special function is $W_n(x)$?
              $endgroup$
              – DavidG
              Jan 3 at 3:55






            • 1




              $begingroup$
              The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
              $endgroup$
              – David G. Stork
              Jan 3 at 3:58










            • $begingroup$
              Cheers @David G. Stork
              $endgroup$
              – DavidG
              Jan 3 at 3:59










            • $begingroup$
              How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
              $endgroup$
              – Alan Glenn
              Jan 3 at 4:07












            • $begingroup$
              @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
              $endgroup$
              – David G. Stork
              Jan 3 at 4:15


















            • $begingroup$
              Sorry pardon my ignorance, which special function is $W_n(x)$?
              $endgroup$
              – DavidG
              Jan 3 at 3:55






            • 1




              $begingroup$
              The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
              $endgroup$
              – David G. Stork
              Jan 3 at 3:58










            • $begingroup$
              Cheers @David G. Stork
              $endgroup$
              – DavidG
              Jan 3 at 3:59










            • $begingroup$
              How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
              $endgroup$
              – Alan Glenn
              Jan 3 at 4:07












            • $begingroup$
              @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
              $endgroup$
              – David G. Stork
              Jan 3 at 4:15
















            $begingroup$
            Sorry pardon my ignorance, which special function is $W_n(x)$?
            $endgroup$
            – DavidG
            Jan 3 at 3:55




            $begingroup$
            Sorry pardon my ignorance, which special function is $W_n(x)$?
            $endgroup$
            – DavidG
            Jan 3 at 3:55




            1




            1




            $begingroup$
            The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
            $endgroup$
            – David G. Stork
            Jan 3 at 3:58




            $begingroup$
            The Lambert W function or ProductLog. en.wikipedia.org/wiki/Lambert_W_function . mathworld.wolfram.com/ProductLogFunction.html
            $endgroup$
            – David G. Stork
            Jan 3 at 3:58












            $begingroup$
            Cheers @David G. Stork
            $endgroup$
            – DavidG
            Jan 3 at 3:59




            $begingroup$
            Cheers @David G. Stork
            $endgroup$
            – DavidG
            Jan 3 at 3:59












            $begingroup$
            How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
            $endgroup$
            – Alan Glenn
            Jan 3 at 4:07






            $begingroup$
            How would you expand the Lamber W function to get $x=2.2418sqrt{vt}$ @DavidG.Stork
            $endgroup$
            – Alan Glenn
            Jan 3 at 4:07














            $begingroup$
            @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
            $endgroup$
            – David G. Stork
            Jan 3 at 4:15




            $begingroup$
            @AlanGlenn: I would merely evaluate it numerically, just as we do with innumerable other functions, such as $sin$, $log$, etc.
            $endgroup$
            – David G. Stork
            Jan 3 at 4:15


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060190%2fsolving-e-fracx24vt-1-fracx22vt-for-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            Npm cannot find a required file even through it is in the searched directory