Advice on correct usage of conditional expectation (proof verification)
$begingroup$
Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.
The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.
On one hand, it feels like
$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$
On the other hand,
$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$
In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.
My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.
On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$
probability probability-theory martingales
$endgroup$
add a comment |
$begingroup$
Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.
The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.
On one hand, it feels like
$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$
On the other hand,
$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$
In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.
My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.
On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$
probability probability-theory martingales
$endgroup$
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11
add a comment |
$begingroup$
Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.
The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.
On one hand, it feels like
$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$
On the other hand,
$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$
In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.
My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.
On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$
probability probability-theory martingales
$endgroup$
Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.
The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.
On one hand, it feels like
$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$
On the other hand,
$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$
In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.
My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.
On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$
probability probability-theory martingales
probability probability-theory martingales
edited Jan 16 at 21:09
sjok
asked Jan 16 at 20:54
sjoksjok
353
353
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11
add a comment |
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$
Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$
but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$
Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$
and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$
$endgroup$
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076283%2fadvice-on-correct-usage-of-conditional-expectation-proof-verification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$
Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$
but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$
Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$
and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$
$endgroup$
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
add a comment |
$begingroup$
First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$
Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$
but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$
Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$
and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$
$endgroup$
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
add a comment |
$begingroup$
First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$
Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$
but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$
Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$
and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$
$endgroup$
First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$
Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$
but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$
Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$
and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$
edited Jan 17 at 1:46
answered Jan 17 at 0:59


d.k.o.d.k.o.
9,685628
9,685628
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
add a comment |
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076283%2fadvice-on-correct-usage-of-conditional-expectation-proof-verification%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11