Advice on correct usage of conditional expectation (proof verification)












2












$begingroup$


Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.




The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.




On one hand, it feels like



$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$



On the other hand,



$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$



In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.



My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.



On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
    $endgroup$
    – sjok
    Jan 16 at 22:11


















2












$begingroup$


Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.




The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.




On one hand, it feels like



$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$



On the other hand,



$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$



In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.



My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.



On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    @d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
    $endgroup$
    – sjok
    Jan 16 at 22:11
















2












2








2





$begingroup$


Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.




The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.




On one hand, it feels like



$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$



On the other hand,



$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$



In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.



My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.



On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$










share|cite|improve this question











$endgroup$




Assume $X_1, ldots, X_n$ are independent and identically distributed random variables where $X in {-1, 1}$ with equal probabilities, and $S_k$ represents their cumulative sum of up to $k$ variables.




The exercise is to show that $mathbb{E}S_{tau}^2 = mathbb{E}tau$, where $tau$ is a $(mathcal{F})_n$ measurable stopping time.




On one hand, it feels like



$$ mathbb{E}tau = sum_{j=1}^nj mathbb{P}(tau=j)=sum_{j=1}^n j mathbb{E}(mathbb{1}_{tau = j})$$



On the other hand,



$$ mathbb{E}(S^2_tau)=sum_{j=1}^nmathbb{E}(S_j^2 mathbb{1}_{tau = j})=sum_{j=1}^nmathbb{E}( mathbb{E}[S_j^2 mathbb{1}_{tau = j}|mathcal{F}_j]) = sum_{j=1}^nmathbb{E}(mathbb{1}_{tau = j} mathbb{E}[S_j^2 |mathcal{F}_j])$$



In essence, it is easy to check that $mathbb{E}(S_j^2)=j$ due to equal probabilities.



My question: is the last equation a proper way to pull out the $j$ from the expectation? That is, by stating that $mathbb{E}(S_j^2 | mathcal{F}_j)=j$? It feels like double expectation here is one way to pull out the $j$, but not entirely sure whether $mathcal{F}_j$ is the right choice here, since it makes the $S_j^2$ measurable.



On the other hand, is pulling out the $j$ necessary, or is it for some reason obvious that
$$ mathbb{E}S_j^2 mathbb{1}_{tau=j} = j mathbb{P}(tau = j)?$$







probability probability-theory martingales






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 21:09







sjok

















asked Jan 16 at 20:54









sjoksjok

353




353












  • $begingroup$
    @d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
    $endgroup$
    – sjok
    Jan 16 at 22:11




















  • $begingroup$
    @d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
    $endgroup$
    – sjok
    Jan 16 at 22:11


















$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11






$begingroup$
@d.k.o If I'm not mistaken, $mathbb{E}(X_i^2) = 1$ due to squares, and $mathbb{E}(X_i X_j) = 1cdot 1 cdot (frac{1}{2})^2 + (-1)cdot 1 cdot (frac{1}{2})^2 + 1cdot (-1) cdot (frac{1}{2})^2 + (-1)cdot (-1) cdot (frac{1}{2})^2 = 0$ for $i neq j$, so $mathbb{E}(S_j^2)$ should reduce to $sum mathbb{E}X_i^2 = j$
$endgroup$
– sjok
Jan 16 at 22:11












1 Answer
1






active

oldest

votes


















1












$begingroup$

First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$





Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$

but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$



Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$

and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
    $endgroup$
    – sjok
    Jan 17 at 14:35











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076283%2fadvice-on-correct-usage-of-conditional-expectation-proof-verification%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$





Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$

but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$



Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$

and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
    $endgroup$
    – sjok
    Jan 17 at 14:35
















1












$begingroup$

First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$





Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$

but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$



Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$

and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
    $endgroup$
    – sjok
    Jan 17 at 14:35














1












1








1





$begingroup$

First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$





Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$

but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$



Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$

and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$






share|cite|improve this answer











$endgroup$



First, ${S_k^2-k}$ is a martingale. Since $taule n$, the optional stopping theorem implies
$$
mathsf{E}[S_{tau}^2-tau]=mathsf{E}[S_1^2-1]=0.
$$





Regarding your question, let $n=4$, $tau:=minleft({kge 1:S_kge 1 }cup{n}right)$. Then
$$
3timesmathsf{P}(tau=3)=frac{3}{8},
$$

but
$$
mathsf{E}[S_tau^21{tau=3}]=mathsf{E}[S_tau^2mid tau=3]mathsf{P}(tau=3)=frac{1}{8}.
$$



Direct computation shows that
$$
mathsf{E}tau=sum_{j=1}^4 jmathsf{P}(tau=j)= 1timesfrac{1}{2}+2times 0+3timesfrac{1}{8}+4timesfrac{3}{8}=frac{19}{8}
$$

and
$$
mathsf{E}S_tau^2=sum_{j=1}^4 mathsf{E}[S_tau^21{tau=j}]=frac{1}{2}+0+frac{1}{8}+frac{7}{4}=frac{19}{8}.
$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 1:46

























answered Jan 17 at 0:59









d.k.o.d.k.o.

9,685628




9,685628












  • $begingroup$
    great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
    $endgroup$
    – sjok
    Jan 17 at 14:35


















  • $begingroup$
    great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
    $endgroup$
    – sjok
    Jan 17 at 14:35
















$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35




$begingroup$
great counterexample, thanks. I still need to wrap my head around conditional expectations, apparently.
$endgroup$
– sjok
Jan 17 at 14:35


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076283%2fadvice-on-correct-usage-of-conditional-expectation-proof-verification%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith