How to solve $cos(2^n x) = cos(x)$
$begingroup$
I am given the function $F:mathbb{R}tomathbb{R}$, $xmapsto 4x(1-x)$ and I have to find all $n$-cycles of the function. I have already reduced this to the problem of solving $cos(2^n x)=cos(x)$ for $xin[0,pi]$. Using Mathematica and $nin{1,2,3,4}$, I concluded that the solutions must be ${frac{2kpi}{2^n-1},frac{2kpi}{2^n+1}}cap[0,pi]$. Since the equation obviously has $2^n$ solutions and the solution set has $2^n$ elements, it only remains to verify that they are indeed solutions to the equation. I tried using $cos(2x)=2cos^2(x)-1$ and proving this by induction on $n$, but I was not able to. Thank you for any help with this problem!
trigonometry
$endgroup$
add a comment |
$begingroup$
I am given the function $F:mathbb{R}tomathbb{R}$, $xmapsto 4x(1-x)$ and I have to find all $n$-cycles of the function. I have already reduced this to the problem of solving $cos(2^n x)=cos(x)$ for $xin[0,pi]$. Using Mathematica and $nin{1,2,3,4}$, I concluded that the solutions must be ${frac{2kpi}{2^n-1},frac{2kpi}{2^n+1}}cap[0,pi]$. Since the equation obviously has $2^n$ solutions and the solution set has $2^n$ elements, it only remains to verify that they are indeed solutions to the equation. I tried using $cos(2x)=2cos^2(x)-1$ and proving this by induction on $n$, but I was not able to. Thank you for any help with this problem!
trigonometry
$endgroup$
add a comment |
$begingroup$
I am given the function $F:mathbb{R}tomathbb{R}$, $xmapsto 4x(1-x)$ and I have to find all $n$-cycles of the function. I have already reduced this to the problem of solving $cos(2^n x)=cos(x)$ for $xin[0,pi]$. Using Mathematica and $nin{1,2,3,4}$, I concluded that the solutions must be ${frac{2kpi}{2^n-1},frac{2kpi}{2^n+1}}cap[0,pi]$. Since the equation obviously has $2^n$ solutions and the solution set has $2^n$ elements, it only remains to verify that they are indeed solutions to the equation. I tried using $cos(2x)=2cos^2(x)-1$ and proving this by induction on $n$, but I was not able to. Thank you for any help with this problem!
trigonometry
$endgroup$
I am given the function $F:mathbb{R}tomathbb{R}$, $xmapsto 4x(1-x)$ and I have to find all $n$-cycles of the function. I have already reduced this to the problem of solving $cos(2^n x)=cos(x)$ for $xin[0,pi]$. Using Mathematica and $nin{1,2,3,4}$, I concluded that the solutions must be ${frac{2kpi}{2^n-1},frac{2kpi}{2^n+1}}cap[0,pi]$. Since the equation obviously has $2^n$ solutions and the solution set has $2^n$ elements, it only remains to verify that they are indeed solutions to the equation. I tried using $cos(2x)=2cos^2(x)-1$ and proving this by induction on $n$, but I was not able to. Thank you for any help with this problem!
trigonometry
trigonometry
edited Jan 17 at 7:09
Analysis801
asked Jan 17 at 6:51
Analysis801Analysis801
1267
1267
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
With only basic results on trigonometric equations:
begin{align}cos(2^nx)=cos x &iff 2^nxequiv pm xmod 2piiffbegin{cases}(2^n-1)xequiv 0mod 2pi\(2^n+1)xequiv 0mod 2piend{cases}\[1ex]
&iff xequiv 0mod frac{2pi}{2^n-1},bmod frac{2pi}{2^n+1}.
end{align}
$endgroup$
add a comment |
$begingroup$
Using the identity $$cos A - cos B = 2sinleft(dfrac{B-A}{2}right)sinleft(dfrac{B+A}{2}right),$$ we have $$0 = cos(x)-cos(2^nx) = 2sinleft(dfrac{2^n-1}{2}xright)sinleft(dfrac{2^n+1}{2}xright),$$ which holds iff $$sinleft(dfrac{2^n-1}{2}xright) = 0 text{OR} sinleft(dfrac{2^n+1}{2}xright) = 0$$ $$dfrac{2^n-1}{2}x = kpi text{OR} dfrac{2^n+1}{2}x = kpi$$ $$x = dfrac{2kpi}{2^n-1} text{OR} x = dfrac{2kpi}{2^n+1}$$ for some $k in mathbb{Z}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076666%2fhow-to-solve-cos2n-x-cosx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With only basic results on trigonometric equations:
begin{align}cos(2^nx)=cos x &iff 2^nxequiv pm xmod 2piiffbegin{cases}(2^n-1)xequiv 0mod 2pi\(2^n+1)xequiv 0mod 2piend{cases}\[1ex]
&iff xequiv 0mod frac{2pi}{2^n-1},bmod frac{2pi}{2^n+1}.
end{align}
$endgroup$
add a comment |
$begingroup$
With only basic results on trigonometric equations:
begin{align}cos(2^nx)=cos x &iff 2^nxequiv pm xmod 2piiffbegin{cases}(2^n-1)xequiv 0mod 2pi\(2^n+1)xequiv 0mod 2piend{cases}\[1ex]
&iff xequiv 0mod frac{2pi}{2^n-1},bmod frac{2pi}{2^n+1}.
end{align}
$endgroup$
add a comment |
$begingroup$
With only basic results on trigonometric equations:
begin{align}cos(2^nx)=cos x &iff 2^nxequiv pm xmod 2piiffbegin{cases}(2^n-1)xequiv 0mod 2pi\(2^n+1)xequiv 0mod 2piend{cases}\[1ex]
&iff xequiv 0mod frac{2pi}{2^n-1},bmod frac{2pi}{2^n+1}.
end{align}
$endgroup$
With only basic results on trigonometric equations:
begin{align}cos(2^nx)=cos x &iff 2^nxequiv pm xmod 2piiffbegin{cases}(2^n-1)xequiv 0mod 2pi\(2^n+1)xequiv 0mod 2piend{cases}\[1ex]
&iff xequiv 0mod frac{2pi}{2^n-1},bmod frac{2pi}{2^n+1}.
end{align}
answered Jan 17 at 9:23
BernardBernard
121k740116
121k740116
add a comment |
add a comment |
$begingroup$
Using the identity $$cos A - cos B = 2sinleft(dfrac{B-A}{2}right)sinleft(dfrac{B+A}{2}right),$$ we have $$0 = cos(x)-cos(2^nx) = 2sinleft(dfrac{2^n-1}{2}xright)sinleft(dfrac{2^n+1}{2}xright),$$ which holds iff $$sinleft(dfrac{2^n-1}{2}xright) = 0 text{OR} sinleft(dfrac{2^n+1}{2}xright) = 0$$ $$dfrac{2^n-1}{2}x = kpi text{OR} dfrac{2^n+1}{2}x = kpi$$ $$x = dfrac{2kpi}{2^n-1} text{OR} x = dfrac{2kpi}{2^n+1}$$ for some $k in mathbb{Z}$.
$endgroup$
add a comment |
$begingroup$
Using the identity $$cos A - cos B = 2sinleft(dfrac{B-A}{2}right)sinleft(dfrac{B+A}{2}right),$$ we have $$0 = cos(x)-cos(2^nx) = 2sinleft(dfrac{2^n-1}{2}xright)sinleft(dfrac{2^n+1}{2}xright),$$ which holds iff $$sinleft(dfrac{2^n-1}{2}xright) = 0 text{OR} sinleft(dfrac{2^n+1}{2}xright) = 0$$ $$dfrac{2^n-1}{2}x = kpi text{OR} dfrac{2^n+1}{2}x = kpi$$ $$x = dfrac{2kpi}{2^n-1} text{OR} x = dfrac{2kpi}{2^n+1}$$ for some $k in mathbb{Z}$.
$endgroup$
add a comment |
$begingroup$
Using the identity $$cos A - cos B = 2sinleft(dfrac{B-A}{2}right)sinleft(dfrac{B+A}{2}right),$$ we have $$0 = cos(x)-cos(2^nx) = 2sinleft(dfrac{2^n-1}{2}xright)sinleft(dfrac{2^n+1}{2}xright),$$ which holds iff $$sinleft(dfrac{2^n-1}{2}xright) = 0 text{OR} sinleft(dfrac{2^n+1}{2}xright) = 0$$ $$dfrac{2^n-1}{2}x = kpi text{OR} dfrac{2^n+1}{2}x = kpi$$ $$x = dfrac{2kpi}{2^n-1} text{OR} x = dfrac{2kpi}{2^n+1}$$ for some $k in mathbb{Z}$.
$endgroup$
Using the identity $$cos A - cos B = 2sinleft(dfrac{B-A}{2}right)sinleft(dfrac{B+A}{2}right),$$ we have $$0 = cos(x)-cos(2^nx) = 2sinleft(dfrac{2^n-1}{2}xright)sinleft(dfrac{2^n+1}{2}xright),$$ which holds iff $$sinleft(dfrac{2^n-1}{2}xright) = 0 text{OR} sinleft(dfrac{2^n+1}{2}xright) = 0$$ $$dfrac{2^n-1}{2}x = kpi text{OR} dfrac{2^n+1}{2}x = kpi$$ $$x = dfrac{2kpi}{2^n-1} text{OR} x = dfrac{2kpi}{2^n+1}$$ for some $k in mathbb{Z}$.
answered Jan 17 at 7:16
JimmyK4542JimmyK4542
41.1k245107
41.1k245107
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076666%2fhow-to-solve-cos2n-x-cosx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown