Generate random graphs with specific mean degree and mean edge weight












1












$begingroup$


I need to generate random undirected graphs with the following characteristics:




  • 24 nodes

  • mean degree ranging between 1 and 23

  • mean edge weight ranging between 1 and 5 (weights must be integers)


I have tried using the python module networkx's expected_degree_graph, but I am not getting anything near the desired result. I tried the example at the bottom of that doc page...



>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)


...but I just get mostly disconnected graphs:



>>> G.degree()
DegreeView({0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0, 26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0, 34: 0, 35: 0, 36: 0, 37: 0, 38: 0, 39: 0, 40: 0, 41: 0, 42: 0, 43: 0, 44: 0, 45: 0, 46: 0, 47: 0, 48: 0, 49: 0, 50: 0, 51: 0, 52: 0, 53: 0, 54: 0, 55: 0, 56: 0, 57: 0, 58: 0, 59: 0, 60: 0, 61: 0, 62: 0, 63: 0, 64: 0, 65: 0, 66: 0, 67: 0, 68: 0, 69: 0, 70: 0, 71: 0, 72: 0, 73: 0, 74: 0, 75: 0, 76: 0, 77: 0, 78: 0, 79: 0, 80: 0, 81: 0, 82: 0, 83: 0, 84: 0, 85: 0, 86: 0, 87: 0, 88: 0, 89: 0, 90: 0, 91: 0, 92: 0, 93: 0, 94: 0, 95: 0, 96: 0, 97: 0, 98: 0, 99: 0, 100: 2})


I prefer solutions using python, but I'll take anything.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
    $endgroup$
    – Oldboy
    Jan 17 at 7:01












  • $begingroup$
    @Oldboy any standard graph representation format would be fine.
    $endgroup$
    – reynoldsnlp
    Jan 17 at 14:17










  • $begingroup$
    Please check my answer
    $endgroup$
    – Oldboy
    Jan 17 at 15:06
















1












$begingroup$


I need to generate random undirected graphs with the following characteristics:




  • 24 nodes

  • mean degree ranging between 1 and 23

  • mean edge weight ranging between 1 and 5 (weights must be integers)


I have tried using the python module networkx's expected_degree_graph, but I am not getting anything near the desired result. I tried the example at the bottom of that doc page...



>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)


...but I just get mostly disconnected graphs:



>>> G.degree()
DegreeView({0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0, 26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0, 34: 0, 35: 0, 36: 0, 37: 0, 38: 0, 39: 0, 40: 0, 41: 0, 42: 0, 43: 0, 44: 0, 45: 0, 46: 0, 47: 0, 48: 0, 49: 0, 50: 0, 51: 0, 52: 0, 53: 0, 54: 0, 55: 0, 56: 0, 57: 0, 58: 0, 59: 0, 60: 0, 61: 0, 62: 0, 63: 0, 64: 0, 65: 0, 66: 0, 67: 0, 68: 0, 69: 0, 70: 0, 71: 0, 72: 0, 73: 0, 74: 0, 75: 0, 76: 0, 77: 0, 78: 0, 79: 0, 80: 0, 81: 0, 82: 0, 83: 0, 84: 0, 85: 0, 86: 0, 87: 0, 88: 0, 89: 0, 90: 0, 91: 0, 92: 0, 93: 0, 94: 0, 95: 0, 96: 0, 97: 0, 98: 0, 99: 0, 100: 2})


I prefer solutions using python, but I'll take anything.










share|cite|improve this question









$endgroup$












  • $begingroup$
    What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
    $endgroup$
    – Oldboy
    Jan 17 at 7:01












  • $begingroup$
    @Oldboy any standard graph representation format would be fine.
    $endgroup$
    – reynoldsnlp
    Jan 17 at 14:17










  • $begingroup$
    Please check my answer
    $endgroup$
    – Oldboy
    Jan 17 at 15:06














1












1








1


1



$begingroup$


I need to generate random undirected graphs with the following characteristics:




  • 24 nodes

  • mean degree ranging between 1 and 23

  • mean edge weight ranging between 1 and 5 (weights must be integers)


I have tried using the python module networkx's expected_degree_graph, but I am not getting anything near the desired result. I tried the example at the bottom of that doc page...



>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)


...but I just get mostly disconnected graphs:



>>> G.degree()
DegreeView({0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0, 26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0, 34: 0, 35: 0, 36: 0, 37: 0, 38: 0, 39: 0, 40: 0, 41: 0, 42: 0, 43: 0, 44: 0, 45: 0, 46: 0, 47: 0, 48: 0, 49: 0, 50: 0, 51: 0, 52: 0, 53: 0, 54: 0, 55: 0, 56: 0, 57: 0, 58: 0, 59: 0, 60: 0, 61: 0, 62: 0, 63: 0, 64: 0, 65: 0, 66: 0, 67: 0, 68: 0, 69: 0, 70: 0, 71: 0, 72: 0, 73: 0, 74: 0, 75: 0, 76: 0, 77: 0, 78: 0, 79: 0, 80: 0, 81: 0, 82: 0, 83: 0, 84: 0, 85: 0, 86: 0, 87: 0, 88: 0, 89: 0, 90: 0, 91: 0, 92: 0, 93: 0, 94: 0, 95: 0, 96: 0, 97: 0, 98: 0, 99: 0, 100: 2})


I prefer solutions using python, but I'll take anything.










share|cite|improve this question









$endgroup$




I need to generate random undirected graphs with the following characteristics:




  • 24 nodes

  • mean degree ranging between 1 and 23

  • mean edge weight ranging between 1 and 5 (weights must be integers)


I have tried using the python module networkx's expected_degree_graph, but I am not getting anything near the desired result. I tried the example at the bottom of that doc page...



>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)


...but I just get mostly disconnected graphs:



>>> G.degree()
DegreeView({0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, 18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0, 26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0, 34: 0, 35: 0, 36: 0, 37: 0, 38: 0, 39: 0, 40: 0, 41: 0, 42: 0, 43: 0, 44: 0, 45: 0, 46: 0, 47: 0, 48: 0, 49: 0, 50: 0, 51: 0, 52: 0, 53: 0, 54: 0, 55: 0, 56: 0, 57: 0, 58: 0, 59: 0, 60: 0, 61: 0, 62: 0, 63: 0, 64: 0, 65: 0, 66: 0, 67: 0, 68: 0, 69: 0, 70: 0, 71: 0, 72: 0, 73: 0, 74: 0, 75: 0, 76: 0, 77: 0, 78: 0, 79: 0, 80: 0, 81: 0, 82: 0, 83: 0, 84: 0, 85: 0, 86: 0, 87: 0, 88: 0, 89: 0, 90: 0, 91: 0, 92: 0, 93: 0, 94: 0, 95: 0, 96: 0, 97: 0, 98: 0, 99: 0, 100: 2})


I prefer solutions using python, but I'll take anything.







graph-theory random random-graphs python






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 17 at 4:32









reynoldsnlpreynoldsnlp

1286




1286












  • $begingroup$
    What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
    $endgroup$
    – Oldboy
    Jan 17 at 7:01












  • $begingroup$
    @Oldboy any standard graph representation format would be fine.
    $endgroup$
    – reynoldsnlp
    Jan 17 at 14:17










  • $begingroup$
    Please check my answer
    $endgroup$
    – Oldboy
    Jan 17 at 15:06


















  • $begingroup$
    What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
    $endgroup$
    – Oldboy
    Jan 17 at 7:01












  • $begingroup$
    @Oldboy any standard graph representation format would be fine.
    $endgroup$
    – reynoldsnlp
    Jan 17 at 14:17










  • $begingroup$
    Please check my answer
    $endgroup$
    – Oldboy
    Jan 17 at 15:06
















$begingroup$
What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
$endgroup$
– Oldboy
Jan 17 at 7:01






$begingroup$
What is the prefererred format for your graph data? Is it ok to have matrix with values $w_{ij}$ representing weight of edge between nodes $i$ and $j$ and zero otherwise? In undirected graph matrix would be symmetrical, of course. I can easily create such matrix.
$endgroup$
– Oldboy
Jan 17 at 7:01














$begingroup$
@Oldboy any standard graph representation format would be fine.
$endgroup$
– reynoldsnlp
Jan 17 at 14:17




$begingroup$
@Oldboy any standard graph representation format would be fine.
$endgroup$
– reynoldsnlp
Jan 17 at 14:17












$begingroup$
Please check my answer
$endgroup$
– Oldboy
Jan 17 at 15:06




$begingroup$
Please check my answer
$endgroup$
– Oldboy
Jan 17 at 15:06










2 Answers
2






active

oldest

votes


















2












$begingroup$

Fairly efficient, won't create disconnected graphs:



import random

class RandomGraph:
def __init__(self, nodes, meanDegree, meanWeight):
self.nodes = nodes
self.meanDegree = meanDegree
self.meanWeight = meanWeight
self.edges = 0
self.weight = 0
self.graph = [[0 for i in range(0, self.nodes)] for j in range(0, self.nodes)]
self.positions = [(i,j) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j]
random.shuffle(self.positions)

def avgDegree(self):
return (self.edges * 2.0) / self.nodes

def avgWeight(self):
return self.weight / self.edges

def addEdge(self, i, j, weight = 1):
if self.graph[i][j] == 0 and self.graph[j][i] == 0:
self.graph[i][j] = weight
self.graph[j][i] = weight
self.edges += 1
self.weight += weight
self.positions.remove((i, j))

def addWeight(self, i, j, add = 1):
if self.graph[i][j] > 0:
self.graph[i][j] += add
self.graph[j][i] += add
self.weight += add

def removeEdge(self, i, j):
self.graph[i][j] = 0
self.graph[j][i] = 0

def getEdges(self):
return [(i, j, self.graph[i][j]) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j and self.graph[i][j] > 0]

def getMatrix(self):
return self.graph

def getNode(self, node):
return [(j, self.graph[node][j]) for j in range(0, self.nodes) if self.graph[node][j] > 0]

def getNodes(self):
return [(i, self.getNode(i)) for i in range(0, self.nodes)]

def createGraph(self):
# First connect even nodes with odd nodes
for i in range(0, self.nodes, 2):
if self.avgDegree() >= self.meanDegree:
break
if i + 1 < self.nodes:
self.addEdge(i, i + 1)
# Now connect odd nodes with even nodes (make chain)
for i in range(1, self.nodes, 2):
if self.avgDegree() >= self.meanDegree:
break
if i + 1 < self.nodes:
self.addEdge(i, i + 1)
if self.avgDegree() < self.meanDegree:
# Close the chain
self.addEdge(0, self.nodes - 1)
# At this point we should start edges randomly until we have reach the average degree
while(len(self.positions) > 0):
if self.avgDegree() >= self.meanDegree:
break
(i, j) = self.positions[0]
self.addEdge(i, j)
# Now we have to increase weights until we reach the needed average
existingEdges = self.getEdges()
while(self.avgWeight() < self.meanWeight):
(i, j, weight) = random.choice(existingEdges)
self.addWeight(i, j)

graph = RandomGraph(24, 5, 3.3)
graph.createGraph()
print("All graph edges with weights, list of (node1, node2, weight) tuplesn", graph.getEdges())
print("Nodes connected to node 1, with weights, list of (node, weigh) tuplesn", graph.getNode(1))
print("Complete node info, list of getNode(i) values for all nodesn", graph.getNodes())
print("Matrix representation, element a[i][j] has the weight of connecting edge, 0 otherwisen", graph.getMatrix())
print("Average degree of noden", graph.avgDegree())
print("Average edge weightn", graph.avgWeight())





share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thanks! I made an implementation of your code below using networkx.
    $endgroup$
    – reynoldsnlp
    Jan 18 at 0:55



















1












$begingroup$

Inspired by the answer given by Oldboy, here is a solution using networkx.





from statistics import mean
from random import choice
from random import sample

import networkx as nx


class MyGraph(nx.Graph):
def __init__(self, num_nodes, target_deg, target_wght, max_wght=5):
super().__init__()
self.num_nodes = num_nodes
self.target_deg = target_deg
self.target_wght = target_wght
self.max_wght = max_wght
self.add_nodes_from(range(self.num_nodes))
while self.avg_deg() < self.target_deg:
n1, n2 = sample(self.nodes(), 2)
self.add_edge(n1, n2, weight=1)
while self.avg_wght() < self.target_wght:
n1, n2 = choice(list(self.edges()))
if self[n1][n2]['weight'] < self.max_wght:
self[n1][n2]['weight'] += 1

def avg_deg(self):
return self.number_of_edges() * 2 / self.num_nodes

def avg_wght(self):
wghts =
for i in range(self.num_nodes):
for j in range(i + 1, self.num_nodes):
try:
wghts.append(self[i][j]['weight'])
except KeyError:
pass
return mean(wghts)





share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076596%2fgenerate-random-graphs-with-specific-mean-degree-and-mean-edge-weight%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Fairly efficient, won't create disconnected graphs:



    import random

    class RandomGraph:
    def __init__(self, nodes, meanDegree, meanWeight):
    self.nodes = nodes
    self.meanDegree = meanDegree
    self.meanWeight = meanWeight
    self.edges = 0
    self.weight = 0
    self.graph = [[0 for i in range(0, self.nodes)] for j in range(0, self.nodes)]
    self.positions = [(i,j) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j]
    random.shuffle(self.positions)

    def avgDegree(self):
    return (self.edges * 2.0) / self.nodes

    def avgWeight(self):
    return self.weight / self.edges

    def addEdge(self, i, j, weight = 1):
    if self.graph[i][j] == 0 and self.graph[j][i] == 0:
    self.graph[i][j] = weight
    self.graph[j][i] = weight
    self.edges += 1
    self.weight += weight
    self.positions.remove((i, j))

    def addWeight(self, i, j, add = 1):
    if self.graph[i][j] > 0:
    self.graph[i][j] += add
    self.graph[j][i] += add
    self.weight += add

    def removeEdge(self, i, j):
    self.graph[i][j] = 0
    self.graph[j][i] = 0

    def getEdges(self):
    return [(i, j, self.graph[i][j]) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j and self.graph[i][j] > 0]

    def getMatrix(self):
    return self.graph

    def getNode(self, node):
    return [(j, self.graph[node][j]) for j in range(0, self.nodes) if self.graph[node][j] > 0]

    def getNodes(self):
    return [(i, self.getNode(i)) for i in range(0, self.nodes)]

    def createGraph(self):
    # First connect even nodes with odd nodes
    for i in range(0, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    # Now connect odd nodes with even nodes (make chain)
    for i in range(1, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    if self.avgDegree() < self.meanDegree:
    # Close the chain
    self.addEdge(0, self.nodes - 1)
    # At this point we should start edges randomly until we have reach the average degree
    while(len(self.positions) > 0):
    if self.avgDegree() >= self.meanDegree:
    break
    (i, j) = self.positions[0]
    self.addEdge(i, j)
    # Now we have to increase weights until we reach the needed average
    existingEdges = self.getEdges()
    while(self.avgWeight() < self.meanWeight):
    (i, j, weight) = random.choice(existingEdges)
    self.addWeight(i, j)

    graph = RandomGraph(24, 5, 3.3)
    graph.createGraph()
    print("All graph edges with weights, list of (node1, node2, weight) tuplesn", graph.getEdges())
    print("Nodes connected to node 1, with weights, list of (node, weigh) tuplesn", graph.getNode(1))
    print("Complete node info, list of getNode(i) values for all nodesn", graph.getNodes())
    print("Matrix representation, element a[i][j] has the weight of connecting edge, 0 otherwisen", graph.getMatrix())
    print("Average degree of noden", graph.avgDegree())
    print("Average edge weightn", graph.avgWeight())





    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks! I made an implementation of your code below using networkx.
      $endgroup$
      – reynoldsnlp
      Jan 18 at 0:55
















    2












    $begingroup$

    Fairly efficient, won't create disconnected graphs:



    import random

    class RandomGraph:
    def __init__(self, nodes, meanDegree, meanWeight):
    self.nodes = nodes
    self.meanDegree = meanDegree
    self.meanWeight = meanWeight
    self.edges = 0
    self.weight = 0
    self.graph = [[0 for i in range(0, self.nodes)] for j in range(0, self.nodes)]
    self.positions = [(i,j) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j]
    random.shuffle(self.positions)

    def avgDegree(self):
    return (self.edges * 2.0) / self.nodes

    def avgWeight(self):
    return self.weight / self.edges

    def addEdge(self, i, j, weight = 1):
    if self.graph[i][j] == 0 and self.graph[j][i] == 0:
    self.graph[i][j] = weight
    self.graph[j][i] = weight
    self.edges += 1
    self.weight += weight
    self.positions.remove((i, j))

    def addWeight(self, i, j, add = 1):
    if self.graph[i][j] > 0:
    self.graph[i][j] += add
    self.graph[j][i] += add
    self.weight += add

    def removeEdge(self, i, j):
    self.graph[i][j] = 0
    self.graph[j][i] = 0

    def getEdges(self):
    return [(i, j, self.graph[i][j]) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j and self.graph[i][j] > 0]

    def getMatrix(self):
    return self.graph

    def getNode(self, node):
    return [(j, self.graph[node][j]) for j in range(0, self.nodes) if self.graph[node][j] > 0]

    def getNodes(self):
    return [(i, self.getNode(i)) for i in range(0, self.nodes)]

    def createGraph(self):
    # First connect even nodes with odd nodes
    for i in range(0, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    # Now connect odd nodes with even nodes (make chain)
    for i in range(1, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    if self.avgDegree() < self.meanDegree:
    # Close the chain
    self.addEdge(0, self.nodes - 1)
    # At this point we should start edges randomly until we have reach the average degree
    while(len(self.positions) > 0):
    if self.avgDegree() >= self.meanDegree:
    break
    (i, j) = self.positions[0]
    self.addEdge(i, j)
    # Now we have to increase weights until we reach the needed average
    existingEdges = self.getEdges()
    while(self.avgWeight() < self.meanWeight):
    (i, j, weight) = random.choice(existingEdges)
    self.addWeight(i, j)

    graph = RandomGraph(24, 5, 3.3)
    graph.createGraph()
    print("All graph edges with weights, list of (node1, node2, weight) tuplesn", graph.getEdges())
    print("Nodes connected to node 1, with weights, list of (node, weigh) tuplesn", graph.getNode(1))
    print("Complete node info, list of getNode(i) values for all nodesn", graph.getNodes())
    print("Matrix representation, element a[i][j] has the weight of connecting edge, 0 otherwisen", graph.getMatrix())
    print("Average degree of noden", graph.avgDegree())
    print("Average edge weightn", graph.avgWeight())





    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks! I made an implementation of your code below using networkx.
      $endgroup$
      – reynoldsnlp
      Jan 18 at 0:55














    2












    2








    2





    $begingroup$

    Fairly efficient, won't create disconnected graphs:



    import random

    class RandomGraph:
    def __init__(self, nodes, meanDegree, meanWeight):
    self.nodes = nodes
    self.meanDegree = meanDegree
    self.meanWeight = meanWeight
    self.edges = 0
    self.weight = 0
    self.graph = [[0 for i in range(0, self.nodes)] for j in range(0, self.nodes)]
    self.positions = [(i,j) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j]
    random.shuffle(self.positions)

    def avgDegree(self):
    return (self.edges * 2.0) / self.nodes

    def avgWeight(self):
    return self.weight / self.edges

    def addEdge(self, i, j, weight = 1):
    if self.graph[i][j] == 0 and self.graph[j][i] == 0:
    self.graph[i][j] = weight
    self.graph[j][i] = weight
    self.edges += 1
    self.weight += weight
    self.positions.remove((i, j))

    def addWeight(self, i, j, add = 1):
    if self.graph[i][j] > 0:
    self.graph[i][j] += add
    self.graph[j][i] += add
    self.weight += add

    def removeEdge(self, i, j):
    self.graph[i][j] = 0
    self.graph[j][i] = 0

    def getEdges(self):
    return [(i, j, self.graph[i][j]) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j and self.graph[i][j] > 0]

    def getMatrix(self):
    return self.graph

    def getNode(self, node):
    return [(j, self.graph[node][j]) for j in range(0, self.nodes) if self.graph[node][j] > 0]

    def getNodes(self):
    return [(i, self.getNode(i)) for i in range(0, self.nodes)]

    def createGraph(self):
    # First connect even nodes with odd nodes
    for i in range(0, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    # Now connect odd nodes with even nodes (make chain)
    for i in range(1, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    if self.avgDegree() < self.meanDegree:
    # Close the chain
    self.addEdge(0, self.nodes - 1)
    # At this point we should start edges randomly until we have reach the average degree
    while(len(self.positions) > 0):
    if self.avgDegree() >= self.meanDegree:
    break
    (i, j) = self.positions[0]
    self.addEdge(i, j)
    # Now we have to increase weights until we reach the needed average
    existingEdges = self.getEdges()
    while(self.avgWeight() < self.meanWeight):
    (i, j, weight) = random.choice(existingEdges)
    self.addWeight(i, j)

    graph = RandomGraph(24, 5, 3.3)
    graph.createGraph()
    print("All graph edges with weights, list of (node1, node2, weight) tuplesn", graph.getEdges())
    print("Nodes connected to node 1, with weights, list of (node, weigh) tuplesn", graph.getNode(1))
    print("Complete node info, list of getNode(i) values for all nodesn", graph.getNodes())
    print("Matrix representation, element a[i][j] has the weight of connecting edge, 0 otherwisen", graph.getMatrix())
    print("Average degree of noden", graph.avgDegree())
    print("Average edge weightn", graph.avgWeight())





    share|cite|improve this answer









    $endgroup$



    Fairly efficient, won't create disconnected graphs:



    import random

    class RandomGraph:
    def __init__(self, nodes, meanDegree, meanWeight):
    self.nodes = nodes
    self.meanDegree = meanDegree
    self.meanWeight = meanWeight
    self.edges = 0
    self.weight = 0
    self.graph = [[0 for i in range(0, self.nodes)] for j in range(0, self.nodes)]
    self.positions = [(i,j) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j]
    random.shuffle(self.positions)

    def avgDegree(self):
    return (self.edges * 2.0) / self.nodes

    def avgWeight(self):
    return self.weight / self.edges

    def addEdge(self, i, j, weight = 1):
    if self.graph[i][j] == 0 and self.graph[j][i] == 0:
    self.graph[i][j] = weight
    self.graph[j][i] = weight
    self.edges += 1
    self.weight += weight
    self.positions.remove((i, j))

    def addWeight(self, i, j, add = 1):
    if self.graph[i][j] > 0:
    self.graph[i][j] += add
    self.graph[j][i] += add
    self.weight += add

    def removeEdge(self, i, j):
    self.graph[i][j] = 0
    self.graph[j][i] = 0

    def getEdges(self):
    return [(i, j, self.graph[i][j]) for i in range(0, self.nodes) for j in range(0, self.nodes) if i < j and self.graph[i][j] > 0]

    def getMatrix(self):
    return self.graph

    def getNode(self, node):
    return [(j, self.graph[node][j]) for j in range(0, self.nodes) if self.graph[node][j] > 0]

    def getNodes(self):
    return [(i, self.getNode(i)) for i in range(0, self.nodes)]

    def createGraph(self):
    # First connect even nodes with odd nodes
    for i in range(0, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    # Now connect odd nodes with even nodes (make chain)
    for i in range(1, self.nodes, 2):
    if self.avgDegree() >= self.meanDegree:
    break
    if i + 1 < self.nodes:
    self.addEdge(i, i + 1)
    if self.avgDegree() < self.meanDegree:
    # Close the chain
    self.addEdge(0, self.nodes - 1)
    # At this point we should start edges randomly until we have reach the average degree
    while(len(self.positions) > 0):
    if self.avgDegree() >= self.meanDegree:
    break
    (i, j) = self.positions[0]
    self.addEdge(i, j)
    # Now we have to increase weights until we reach the needed average
    existingEdges = self.getEdges()
    while(self.avgWeight() < self.meanWeight):
    (i, j, weight) = random.choice(existingEdges)
    self.addWeight(i, j)

    graph = RandomGraph(24, 5, 3.3)
    graph.createGraph()
    print("All graph edges with weights, list of (node1, node2, weight) tuplesn", graph.getEdges())
    print("Nodes connected to node 1, with weights, list of (node, weigh) tuplesn", graph.getNode(1))
    print("Complete node info, list of getNode(i) values for all nodesn", graph.getNodes())
    print("Matrix representation, element a[i][j] has the weight of connecting edge, 0 otherwisen", graph.getMatrix())
    print("Average degree of noden", graph.avgDegree())
    print("Average edge weightn", graph.avgWeight())






    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 17 at 11:24









    OldboyOldboy

    8,4521936




    8,4521936












    • $begingroup$
      Thanks! I made an implementation of your code below using networkx.
      $endgroup$
      – reynoldsnlp
      Jan 18 at 0:55


















    • $begingroup$
      Thanks! I made an implementation of your code below using networkx.
      $endgroup$
      – reynoldsnlp
      Jan 18 at 0:55
















    $begingroup$
    Thanks! I made an implementation of your code below using networkx.
    $endgroup$
    – reynoldsnlp
    Jan 18 at 0:55




    $begingroup$
    Thanks! I made an implementation of your code below using networkx.
    $endgroup$
    – reynoldsnlp
    Jan 18 at 0:55











    1












    $begingroup$

    Inspired by the answer given by Oldboy, here is a solution using networkx.





    from statistics import mean
    from random import choice
    from random import sample

    import networkx as nx


    class MyGraph(nx.Graph):
    def __init__(self, num_nodes, target_deg, target_wght, max_wght=5):
    super().__init__()
    self.num_nodes = num_nodes
    self.target_deg = target_deg
    self.target_wght = target_wght
    self.max_wght = max_wght
    self.add_nodes_from(range(self.num_nodes))
    while self.avg_deg() < self.target_deg:
    n1, n2 = sample(self.nodes(), 2)
    self.add_edge(n1, n2, weight=1)
    while self.avg_wght() < self.target_wght:
    n1, n2 = choice(list(self.edges()))
    if self[n1][n2]['weight'] < self.max_wght:
    self[n1][n2]['weight'] += 1

    def avg_deg(self):
    return self.number_of_edges() * 2 / self.num_nodes

    def avg_wght(self):
    wghts =
    for i in range(self.num_nodes):
    for j in range(i + 1, self.num_nodes):
    try:
    wghts.append(self[i][j]['weight'])
    except KeyError:
    pass
    return mean(wghts)





    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Inspired by the answer given by Oldboy, here is a solution using networkx.





      from statistics import mean
      from random import choice
      from random import sample

      import networkx as nx


      class MyGraph(nx.Graph):
      def __init__(self, num_nodes, target_deg, target_wght, max_wght=5):
      super().__init__()
      self.num_nodes = num_nodes
      self.target_deg = target_deg
      self.target_wght = target_wght
      self.max_wght = max_wght
      self.add_nodes_from(range(self.num_nodes))
      while self.avg_deg() < self.target_deg:
      n1, n2 = sample(self.nodes(), 2)
      self.add_edge(n1, n2, weight=1)
      while self.avg_wght() < self.target_wght:
      n1, n2 = choice(list(self.edges()))
      if self[n1][n2]['weight'] < self.max_wght:
      self[n1][n2]['weight'] += 1

      def avg_deg(self):
      return self.number_of_edges() * 2 / self.num_nodes

      def avg_wght(self):
      wghts =
      for i in range(self.num_nodes):
      for j in range(i + 1, self.num_nodes):
      try:
      wghts.append(self[i][j]['weight'])
      except KeyError:
      pass
      return mean(wghts)





      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Inspired by the answer given by Oldboy, here is a solution using networkx.





        from statistics import mean
        from random import choice
        from random import sample

        import networkx as nx


        class MyGraph(nx.Graph):
        def __init__(self, num_nodes, target_deg, target_wght, max_wght=5):
        super().__init__()
        self.num_nodes = num_nodes
        self.target_deg = target_deg
        self.target_wght = target_wght
        self.max_wght = max_wght
        self.add_nodes_from(range(self.num_nodes))
        while self.avg_deg() < self.target_deg:
        n1, n2 = sample(self.nodes(), 2)
        self.add_edge(n1, n2, weight=1)
        while self.avg_wght() < self.target_wght:
        n1, n2 = choice(list(self.edges()))
        if self[n1][n2]['weight'] < self.max_wght:
        self[n1][n2]['weight'] += 1

        def avg_deg(self):
        return self.number_of_edges() * 2 / self.num_nodes

        def avg_wght(self):
        wghts =
        for i in range(self.num_nodes):
        for j in range(i + 1, self.num_nodes):
        try:
        wghts.append(self[i][j]['weight'])
        except KeyError:
        pass
        return mean(wghts)





        share|cite|improve this answer









        $endgroup$



        Inspired by the answer given by Oldboy, here is a solution using networkx.





        from statistics import mean
        from random import choice
        from random import sample

        import networkx as nx


        class MyGraph(nx.Graph):
        def __init__(self, num_nodes, target_deg, target_wght, max_wght=5):
        super().__init__()
        self.num_nodes = num_nodes
        self.target_deg = target_deg
        self.target_wght = target_wght
        self.max_wght = max_wght
        self.add_nodes_from(range(self.num_nodes))
        while self.avg_deg() < self.target_deg:
        n1, n2 = sample(self.nodes(), 2)
        self.add_edge(n1, n2, weight=1)
        while self.avg_wght() < self.target_wght:
        n1, n2 = choice(list(self.edges()))
        if self[n1][n2]['weight'] < self.max_wght:
        self[n1][n2]['weight'] += 1

        def avg_deg(self):
        return self.number_of_edges() * 2 / self.num_nodes

        def avg_wght(self):
        wghts =
        for i in range(self.num_nodes):
        for j in range(i + 1, self.num_nodes):
        try:
        wghts.append(self[i][j]['weight'])
        except KeyError:
        pass
        return mean(wghts)






        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 18 at 0:54









        reynoldsnlpreynoldsnlp

        1286




        1286






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076596%2fgenerate-random-graphs-with-specific-mean-degree-and-mean-edge-weight%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]