Convolution with unusual limits












0












$begingroup$


I would like to find the Fourier transform of the following function:
$$
mathcal{F}(x) = int_{vert xvert}^infty !
{f}^astleft((r-x)/2right){f}left({(r+x)}/{2}right)operatorname{d}!r
$$

where $f(t)= e^{iA t}operatorname{sinc}(B t)$, with $A, Binmathtt{R}$.



To do the Fourier transform, I thought that I may be able to manipulate the integrand so that I could apply the convolution theorem.
My attempt to do so was to do a change of limits $r = 2y+vert xvert$, such that
$$
mathcal{F}(x) = 2H(x)int_{0}^infty !
{f}^astleft(yright){f}left(y-xright)operatorname{d}!y
+ 2H(-x)int_{0}^infty !
{f}^astleft(y+xright){f}left(yright)operatorname{d}!y
$$

where $H(x)$ is the Heaviside function. Applying the Fourier transform then we obtain:
$$
F(omega) =int_{-infty}^infty d x mathcal{F}(x) e^{iomega x}= operatorname{Re}left[int_0^infty dx int_0^infty dy e^{iomega x}{f}^astleft(yright){f}left(y-xright)
right]
$$

and now I'm stuck. Is the convolution theorem still valid for these limits of integration?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I would like to find the Fourier transform of the following function:
    $$
    mathcal{F}(x) = int_{vert xvert}^infty !
    {f}^astleft((r-x)/2right){f}left({(r+x)}/{2}right)operatorname{d}!r
    $$

    where $f(t)= e^{iA t}operatorname{sinc}(B t)$, with $A, Binmathtt{R}$.



    To do the Fourier transform, I thought that I may be able to manipulate the integrand so that I could apply the convolution theorem.
    My attempt to do so was to do a change of limits $r = 2y+vert xvert$, such that
    $$
    mathcal{F}(x) = 2H(x)int_{0}^infty !
    {f}^astleft(yright){f}left(y-xright)operatorname{d}!y
    + 2H(-x)int_{0}^infty !
    {f}^astleft(y+xright){f}left(yright)operatorname{d}!y
    $$

    where $H(x)$ is the Heaviside function. Applying the Fourier transform then we obtain:
    $$
    F(omega) =int_{-infty}^infty d x mathcal{F}(x) e^{iomega x}= operatorname{Re}left[int_0^infty dx int_0^infty dy e^{iomega x}{f}^astleft(yright){f}left(y-xright)
    right]
    $$

    and now I'm stuck. Is the convolution theorem still valid for these limits of integration?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I would like to find the Fourier transform of the following function:
      $$
      mathcal{F}(x) = int_{vert xvert}^infty !
      {f}^astleft((r-x)/2right){f}left({(r+x)}/{2}right)operatorname{d}!r
      $$

      where $f(t)= e^{iA t}operatorname{sinc}(B t)$, with $A, Binmathtt{R}$.



      To do the Fourier transform, I thought that I may be able to manipulate the integrand so that I could apply the convolution theorem.
      My attempt to do so was to do a change of limits $r = 2y+vert xvert$, such that
      $$
      mathcal{F}(x) = 2H(x)int_{0}^infty !
      {f}^astleft(yright){f}left(y-xright)operatorname{d}!y
      + 2H(-x)int_{0}^infty !
      {f}^astleft(y+xright){f}left(yright)operatorname{d}!y
      $$

      where $H(x)$ is the Heaviside function. Applying the Fourier transform then we obtain:
      $$
      F(omega) =int_{-infty}^infty d x mathcal{F}(x) e^{iomega x}= operatorname{Re}left[int_0^infty dx int_0^infty dy e^{iomega x}{f}^astleft(yright){f}left(y-xright)
      right]
      $$

      and now I'm stuck. Is the convolution theorem still valid for these limits of integration?










      share|cite|improve this question









      $endgroup$




      I would like to find the Fourier transform of the following function:
      $$
      mathcal{F}(x) = int_{vert xvert}^infty !
      {f}^astleft((r-x)/2right){f}left({(r+x)}/{2}right)operatorname{d}!r
      $$

      where $f(t)= e^{iA t}operatorname{sinc}(B t)$, with $A, Binmathtt{R}$.



      To do the Fourier transform, I thought that I may be able to manipulate the integrand so that I could apply the convolution theorem.
      My attempt to do so was to do a change of limits $r = 2y+vert xvert$, such that
      $$
      mathcal{F}(x) = 2H(x)int_{0}^infty !
      {f}^astleft(yright){f}left(y-xright)operatorname{d}!y
      + 2H(-x)int_{0}^infty !
      {f}^astleft(y+xright){f}left(yright)operatorname{d}!y
      $$

      where $H(x)$ is the Heaviside function. Applying the Fourier transform then we obtain:
      $$
      F(omega) =int_{-infty}^infty d x mathcal{F}(x) e^{iomega x}= operatorname{Re}left[int_0^infty dx int_0^infty dy e^{iomega x}{f}^astleft(yright){f}left(y-xright)
      right]
      $$

      and now I'm stuck. Is the convolution theorem still valid for these limits of integration?







      fourier-analysis convolution






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 17 at 13:59









      JilesJiles

      112




      112






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077005%2fconvolution-with-unusual-limits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077005%2fconvolution-with-unusual-limits%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          Npm cannot find a required file even through it is in the searched directory