Solve the recurrence relation $a_n=a_{n-1}+2n+3a_{n-3}?$
$begingroup$
I am currently solving a recurrence relation but I got stuck since I am not even able to find the basic root of the auxiliary equations.
recurrence-relations homogeneous-equation
$endgroup$
|
show 1 more comment
$begingroup$
I am currently solving a recurrence relation but I got stuck since I am not even able to find the basic root of the auxiliary equations.
recurrence-relations homogeneous-equation
$endgroup$
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
1
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16
|
show 1 more comment
$begingroup$
I am currently solving a recurrence relation but I got stuck since I am not even able to find the basic root of the auxiliary equations.
recurrence-relations homogeneous-equation
$endgroup$
I am currently solving a recurrence relation but I got stuck since I am not even able to find the basic root of the auxiliary equations.
recurrence-relations homogeneous-equation
recurrence-relations homogeneous-equation
edited Jan 17 at 14:48
Adrian Keister
5,26571933
5,26571933
asked Jan 17 at 14:36
Sagar SharmaSagar Sharma
143
143
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
1
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16
|
show 1 more comment
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
1
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
1
1
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
Let's rewrite this as
begin{align*}
a_{n+3} = a_{n+2} + 2(n+3) + 3a_n
end{align*}
The generating function for this sequence is
begin{align*}
frac{f(x) - a_0 - a_1x - a_2x^2}{x^3} = frac{f(x) - a_0 - a_1x}{x^2} + frac{2(3 - 2x)}{(1-x)^2} + 3f(x)
end{align*}
Solving for $f(x)$ gives us
begin{align*}
f(x) = color{blue}{frac{a_0(x-1)}{(3x^3+x-1)}} + color{red}{frac{a_1 x(x-1)}{(3x^3+x-1)}} - color{green}{frac{a_2x^2}{(3x^3+x-1)}} - color{orange}{frac{2(3-2x)x^3}{(x-1)^2(3x^3+x-1)}}
end{align*}
Let $r_1, r_2, r_3$ be the roots of $3x^3 + x - 1=0$. Then the series expansion of the blue term is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_0}{3}left(frac{1 - r_1}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{1 - r_2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{1 - r_3}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{p_n}x^n
end{align*}
Similarly, the red portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_1}{3}left(frac{r_1(1 - r_1)}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2(1 - r_2)}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3(1 - r_3)}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{q_n}x^n
end{align*}
The green portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_2}{3}left(frac{r_1^2}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2^2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3^2}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{r_n}x^n
end{align*}
Exercise Find the series expansion for the orange term, and call the coefficients as $s_n$.
Finally, your sequence can be expressed as
begin{align*}
a_n = p_n + q_n - r_n - s_n
end{align*}
There is some heavy simplification you can do. For example, you can express
begin{align*}
p_n + q_n - r_n=sum_{t=1}^{3}frac{1}{r_t^{n+1}}g_t(a_0, a_1, a_2, r_1, r_2, r_3)
end{align*}
For functions $g_1, g_2, g_3$, which you can pre-compute in a computer implementation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077056%2fsolve-the-recurrence-relation-a-n-a-n-12n3a-n-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's rewrite this as
begin{align*}
a_{n+3} = a_{n+2} + 2(n+3) + 3a_n
end{align*}
The generating function for this sequence is
begin{align*}
frac{f(x) - a_0 - a_1x - a_2x^2}{x^3} = frac{f(x) - a_0 - a_1x}{x^2} + frac{2(3 - 2x)}{(1-x)^2} + 3f(x)
end{align*}
Solving for $f(x)$ gives us
begin{align*}
f(x) = color{blue}{frac{a_0(x-1)}{(3x^3+x-1)}} + color{red}{frac{a_1 x(x-1)}{(3x^3+x-1)}} - color{green}{frac{a_2x^2}{(3x^3+x-1)}} - color{orange}{frac{2(3-2x)x^3}{(x-1)^2(3x^3+x-1)}}
end{align*}
Let $r_1, r_2, r_3$ be the roots of $3x^3 + x - 1=0$. Then the series expansion of the blue term is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_0}{3}left(frac{1 - r_1}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{1 - r_2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{1 - r_3}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{p_n}x^n
end{align*}
Similarly, the red portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_1}{3}left(frac{r_1(1 - r_1)}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2(1 - r_2)}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3(1 - r_3)}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{q_n}x^n
end{align*}
The green portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_2}{3}left(frac{r_1^2}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2^2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3^2}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{r_n}x^n
end{align*}
Exercise Find the series expansion for the orange term, and call the coefficients as $s_n$.
Finally, your sequence can be expressed as
begin{align*}
a_n = p_n + q_n - r_n - s_n
end{align*}
There is some heavy simplification you can do. For example, you can express
begin{align*}
p_n + q_n - r_n=sum_{t=1}^{3}frac{1}{r_t^{n+1}}g_t(a_0, a_1, a_2, r_1, r_2, r_3)
end{align*}
For functions $g_1, g_2, g_3$, which you can pre-compute in a computer implementation.
$endgroup$
add a comment |
$begingroup$
Let's rewrite this as
begin{align*}
a_{n+3} = a_{n+2} + 2(n+3) + 3a_n
end{align*}
The generating function for this sequence is
begin{align*}
frac{f(x) - a_0 - a_1x - a_2x^2}{x^3} = frac{f(x) - a_0 - a_1x}{x^2} + frac{2(3 - 2x)}{(1-x)^2} + 3f(x)
end{align*}
Solving for $f(x)$ gives us
begin{align*}
f(x) = color{blue}{frac{a_0(x-1)}{(3x^3+x-1)}} + color{red}{frac{a_1 x(x-1)}{(3x^3+x-1)}} - color{green}{frac{a_2x^2}{(3x^3+x-1)}} - color{orange}{frac{2(3-2x)x^3}{(x-1)^2(3x^3+x-1)}}
end{align*}
Let $r_1, r_2, r_3$ be the roots of $3x^3 + x - 1=0$. Then the series expansion of the blue term is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_0}{3}left(frac{1 - r_1}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{1 - r_2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{1 - r_3}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{p_n}x^n
end{align*}
Similarly, the red portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_1}{3}left(frac{r_1(1 - r_1)}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2(1 - r_2)}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3(1 - r_3)}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{q_n}x^n
end{align*}
The green portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_2}{3}left(frac{r_1^2}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2^2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3^2}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{r_n}x^n
end{align*}
Exercise Find the series expansion for the orange term, and call the coefficients as $s_n$.
Finally, your sequence can be expressed as
begin{align*}
a_n = p_n + q_n - r_n - s_n
end{align*}
There is some heavy simplification you can do. For example, you can express
begin{align*}
p_n + q_n - r_n=sum_{t=1}^{3}frac{1}{r_t^{n+1}}g_t(a_0, a_1, a_2, r_1, r_2, r_3)
end{align*}
For functions $g_1, g_2, g_3$, which you can pre-compute in a computer implementation.
$endgroup$
add a comment |
$begingroup$
Let's rewrite this as
begin{align*}
a_{n+3} = a_{n+2} + 2(n+3) + 3a_n
end{align*}
The generating function for this sequence is
begin{align*}
frac{f(x) - a_0 - a_1x - a_2x^2}{x^3} = frac{f(x) - a_0 - a_1x}{x^2} + frac{2(3 - 2x)}{(1-x)^2} + 3f(x)
end{align*}
Solving for $f(x)$ gives us
begin{align*}
f(x) = color{blue}{frac{a_0(x-1)}{(3x^3+x-1)}} + color{red}{frac{a_1 x(x-1)}{(3x^3+x-1)}} - color{green}{frac{a_2x^2}{(3x^3+x-1)}} - color{orange}{frac{2(3-2x)x^3}{(x-1)^2(3x^3+x-1)}}
end{align*}
Let $r_1, r_2, r_3$ be the roots of $3x^3 + x - 1=0$. Then the series expansion of the blue term is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_0}{3}left(frac{1 - r_1}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{1 - r_2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{1 - r_3}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{p_n}x^n
end{align*}
Similarly, the red portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_1}{3}left(frac{r_1(1 - r_1)}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2(1 - r_2)}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3(1 - r_3)}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{q_n}x^n
end{align*}
The green portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_2}{3}left(frac{r_1^2}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2^2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3^2}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{r_n}x^n
end{align*}
Exercise Find the series expansion for the orange term, and call the coefficients as $s_n$.
Finally, your sequence can be expressed as
begin{align*}
a_n = p_n + q_n - r_n - s_n
end{align*}
There is some heavy simplification you can do. For example, you can express
begin{align*}
p_n + q_n - r_n=sum_{t=1}^{3}frac{1}{r_t^{n+1}}g_t(a_0, a_1, a_2, r_1, r_2, r_3)
end{align*}
For functions $g_1, g_2, g_3$, which you can pre-compute in a computer implementation.
$endgroup$
Let's rewrite this as
begin{align*}
a_{n+3} = a_{n+2} + 2(n+3) + 3a_n
end{align*}
The generating function for this sequence is
begin{align*}
frac{f(x) - a_0 - a_1x - a_2x^2}{x^3} = frac{f(x) - a_0 - a_1x}{x^2} + frac{2(3 - 2x)}{(1-x)^2} + 3f(x)
end{align*}
Solving for $f(x)$ gives us
begin{align*}
f(x) = color{blue}{frac{a_0(x-1)}{(3x^3+x-1)}} + color{red}{frac{a_1 x(x-1)}{(3x^3+x-1)}} - color{green}{frac{a_2x^2}{(3x^3+x-1)}} - color{orange}{frac{2(3-2x)x^3}{(x-1)^2(3x^3+x-1)}}
end{align*}
Let $r_1, r_2, r_3$ be the roots of $3x^3 + x - 1=0$. Then the series expansion of the blue term is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_0}{3}left(frac{1 - r_1}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{1 - r_2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{1 - r_3}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{p_n}x^n
end{align*}
Similarly, the red portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_1}{3}left(frac{r_1(1 - r_1)}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2(1 - r_2)}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3(1 - r_3)}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{q_n}x^n
end{align*}
The green portion is
begin{align*}
sum_{n=0}^{infty}underbrace{left{frac{a_2}{3}left(frac{r_1^2}{r_1^{n+1}(r_1 - r_2)(r_1 - r_3)} + frac{r_2^2}{r_2^{n+1}(r_2 - r_1)(r_2 - r_3)} + frac{r_3^2}{r_3^{n+1}(r_3 - r_1)(r_3 - r_2)}right)right}}_{r_n}x^n
end{align*}
Exercise Find the series expansion for the orange term, and call the coefficients as $s_n$.
Finally, your sequence can be expressed as
begin{align*}
a_n = p_n + q_n - r_n - s_n
end{align*}
There is some heavy simplification you can do. For example, you can express
begin{align*}
p_n + q_n - r_n=sum_{t=1}^{3}frac{1}{r_t^{n+1}}g_t(a_0, a_1, a_2, r_1, r_2, r_3)
end{align*}
For functions $g_1, g_2, g_3$, which you can pre-compute in a computer implementation.
edited Jan 17 at 16:38
answered Jan 17 at 16:30
Tom ChenTom Chen
1,568715
1,568715
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077056%2fsolve-the-recurrence-relation-a-n-a-n-12n3a-n-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Do you mean $a_n = a_{n-1} + 2n + 3a_{n-3}$ or $a_n = a_{n-2} + 2 a_{n-2} + 3 a_{n-3}$ (or something else entirely)?
$endgroup$
– Connor Harris
Jan 17 at 14:41
$begingroup$
First one!!!!!!
$endgroup$
– Sagar Sharma
Jan 17 at 14:43
$begingroup$
Do you have initial conditions?
$endgroup$
– Adrian Keister
Jan 17 at 14:49
$begingroup$
Initial conditions are varying.
$endgroup$
– Sagar Sharma
Jan 17 at 14:51
1
$begingroup$
Let $a_n=b_n+p+qn$ to eliminate $n$
$endgroup$
– lab bhattacharjee
Jan 17 at 15:16