Evaluate $int_{0}^{2pi} lfloorcot^{-1}xrfloor,dx$ from $0$ to $2 pi$.












0












$begingroup$


Evaluate $int_{0}^{2pi} lfloorcot^{-1}xrfloor,dx$ from $0$ to $2 pi$. Where $lfloor{}cdot{}rfloor$ denotes the greatest integer function.



Here $x$ varies from $0$ to $2 pi$, so



$cot^{-1}0 > cot^{-1}x > cot^{-1}2 pi$



$infty > cot^{-1}x > cot^{-1}2 pi$



Now
$int_{cot1}^{ 2pi} lfloorcot^{-1}xrfloor,dx + int_{0}^{cot1}lfloorcot^{-1}xrfloor,dx$



The first part of integral is clearly zero, how to evaluate second part?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @egreg you edited the question correctly.
    $endgroup$
    – Mathsaddict
    Jan 17 at 14:19










  • $begingroup$
    @Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
    $endgroup$
    – egreg
    Jan 17 at 14:21










  • $begingroup$
    math.stackexchange.com/questions/3076606/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 14:26
















0












$begingroup$


Evaluate $int_{0}^{2pi} lfloorcot^{-1}xrfloor,dx$ from $0$ to $2 pi$. Where $lfloor{}cdot{}rfloor$ denotes the greatest integer function.



Here $x$ varies from $0$ to $2 pi$, so



$cot^{-1}0 > cot^{-1}x > cot^{-1}2 pi$



$infty > cot^{-1}x > cot^{-1}2 pi$



Now
$int_{cot1}^{ 2pi} lfloorcot^{-1}xrfloor,dx + int_{0}^{cot1}lfloorcot^{-1}xrfloor,dx$



The first part of integral is clearly zero, how to evaluate second part?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @egreg you edited the question correctly.
    $endgroup$
    – Mathsaddict
    Jan 17 at 14:19










  • $begingroup$
    @Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
    $endgroup$
    – egreg
    Jan 17 at 14:21










  • $begingroup$
    math.stackexchange.com/questions/3076606/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 14:26














0












0








0





$begingroup$


Evaluate $int_{0}^{2pi} lfloorcot^{-1}xrfloor,dx$ from $0$ to $2 pi$. Where $lfloor{}cdot{}rfloor$ denotes the greatest integer function.



Here $x$ varies from $0$ to $2 pi$, so



$cot^{-1}0 > cot^{-1}x > cot^{-1}2 pi$



$infty > cot^{-1}x > cot^{-1}2 pi$



Now
$int_{cot1}^{ 2pi} lfloorcot^{-1}xrfloor,dx + int_{0}^{cot1}lfloorcot^{-1}xrfloor,dx$



The first part of integral is clearly zero, how to evaluate second part?










share|cite|improve this question











$endgroup$




Evaluate $int_{0}^{2pi} lfloorcot^{-1}xrfloor,dx$ from $0$ to $2 pi$. Where $lfloor{}cdot{}rfloor$ denotes the greatest integer function.



Here $x$ varies from $0$ to $2 pi$, so



$cot^{-1}0 > cot^{-1}x > cot^{-1}2 pi$



$infty > cot^{-1}x > cot^{-1}2 pi$



Now
$int_{cot1}^{ 2pi} lfloorcot^{-1}xrfloor,dx + int_{0}^{cot1}lfloorcot^{-1}xrfloor,dx$



The first part of integral is clearly zero, how to evaluate second part?







calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 14:20









egreg

183k1486204




183k1486204










asked Jan 17 at 14:11









MathsaddictMathsaddict

3619




3619












  • $begingroup$
    @egreg you edited the question correctly.
    $endgroup$
    – Mathsaddict
    Jan 17 at 14:19










  • $begingroup$
    @Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
    $endgroup$
    – egreg
    Jan 17 at 14:21










  • $begingroup$
    math.stackexchange.com/questions/3076606/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 14:26


















  • $begingroup$
    @egreg you edited the question correctly.
    $endgroup$
    – Mathsaddict
    Jan 17 at 14:19










  • $begingroup$
    @Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
    $endgroup$
    – egreg
    Jan 17 at 14:21










  • $begingroup$
    math.stackexchange.com/questions/3076606/…
    $endgroup$
    – lab bhattacharjee
    Jan 17 at 14:26
















$begingroup$
@egreg you edited the question correctly.
$endgroup$
– Mathsaddict
Jan 17 at 14:19




$begingroup$
@egreg you edited the question correctly.
$endgroup$
– Mathsaddict
Jan 17 at 14:19












$begingroup$
@Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
$endgroup$
– egreg
Jan 17 at 14:21




$begingroup$
@Mathsaddict The symbol $lfloor{}cdot{}rfloor$ is more commonly used than $[{}cdot{}]$.
$endgroup$
– egreg
Jan 17 at 14:21












$begingroup$
math.stackexchange.com/questions/3076606/…
$endgroup$
– lab bhattacharjee
Jan 17 at 14:26




$begingroup$
math.stackexchange.com/questions/3076606/…
$endgroup$
– lab bhattacharjee
Jan 17 at 14:26










1 Answer
1






active

oldest

votes


















2












$begingroup$

$$0le xlecot1$$



$$dfracpi2gecot^{-1}xge1impliesleftlfloorcot^{-1}xrightrfloor=1$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077022%2fevaluate-int-02-pi-lfloor-cot-1x-rfloor-dx-from-0-to-2-pi%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    $$0le xlecot1$$



    $$dfracpi2gecot^{-1}xge1impliesleftlfloorcot^{-1}xrightrfloor=1$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      $$0le xlecot1$$



      $$dfracpi2gecot^{-1}xge1impliesleftlfloorcot^{-1}xrightrfloor=1$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        $$0le xlecot1$$



        $$dfracpi2gecot^{-1}xge1impliesleftlfloorcot^{-1}xrightrfloor=1$$






        share|cite|improve this answer









        $endgroup$



        $$0le xlecot1$$



        $$dfracpi2gecot^{-1}xge1impliesleftlfloorcot^{-1}xrightrfloor=1$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 17 at 14:18









        lab bhattacharjeelab bhattacharjee

        226k15157275




        226k15157275






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077022%2fevaluate-int-02-pi-lfloor-cot-1x-rfloor-dx-from-0-to-2-pi%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]