Deriving the volume of a right circular cylinder using triple integral
$begingroup$
Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.
calculus integration multivariable-calculus volume
$endgroup$
add a comment |
$begingroup$
Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.
calculus integration multivariable-calculus volume
$endgroup$
add a comment |
$begingroup$
Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.
calculus integration multivariable-calculus volume
$endgroup$
Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.
calculus integration multivariable-calculus volume
calculus integration multivariable-calculus volume
edited Mar 13 '16 at 23:42
Ivo Terek
46.3k954142
46.3k954142
asked Mar 13 '16 at 23:33
12332111233211
317111
317111
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
$$begin{align*}
iiint_{mathrm{Cyl}} dV
&= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
&= int_0^r int_0^h 2pi rho,dz,drho \
&= int_0^r 2pi rho h ,drho \
&= left. pi rho^2 h right|_0^r = pi r^2 h
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1696342%2fderiving-the-volume-of-a-right-circular-cylinder-using-triple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
$$begin{align*}
iiint_{mathrm{Cyl}} dV
&= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
&= int_0^r int_0^h 2pi rho,dz,drho \
&= int_0^r 2pi rho h ,drho \
&= left. pi rho^2 h right|_0^r = pi r^2 h
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
$$begin{align*}
iiint_{mathrm{Cyl}} dV
&= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
&= int_0^r int_0^h 2pi rho,dz,drho \
&= int_0^r 2pi rho h ,drho \
&= left. pi rho^2 h right|_0^r = pi r^2 h
end{align*}$$
$endgroup$
add a comment |
$begingroup$
Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
$$begin{align*}
iiint_{mathrm{Cyl}} dV
&= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
&= int_0^r int_0^h 2pi rho,dz,drho \
&= int_0^r 2pi rho h ,drho \
&= left. pi rho^2 h right|_0^r = pi r^2 h
end{align*}$$
$endgroup$
Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
$$begin{align*}
iiint_{mathrm{Cyl}} dV
&= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
&= int_0^r int_0^h 2pi rho,dz,drho \
&= int_0^r 2pi rho h ,drho \
&= left. pi rho^2 h right|_0^r = pi r^2 h
end{align*}$$
answered Mar 13 '16 at 23:38
Henricus V.Henricus V.
15.2k22149
15.2k22149
add a comment |
add a comment |
$begingroup$
Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$
$endgroup$
add a comment |
$begingroup$
Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$
$endgroup$
add a comment |
$begingroup$
Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$
$endgroup$
Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$
answered Mar 13 '16 at 23:41
Ivo TerekIvo Terek
46.3k954142
46.3k954142
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1696342%2fderiving-the-volume-of-a-right-circular-cylinder-using-triple-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown