Deriving the volume of a right circular cylinder using triple integral












0












$begingroup$


Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.










      share|cite|improve this question











      $endgroup$




      Just for fun, I was wondering how one could derive the formula for the volume of a right circular cylinder using triple integrals in cylindrical coordinates.







      calculus integration multivariable-calculus volume






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 13 '16 at 23:42









      Ivo Terek

      46.3k954142




      46.3k954142










      asked Mar 13 '16 at 23:33









      12332111233211

      317111




      317111






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
          $$begin{align*}
          iiint_{mathrm{Cyl}} dV
          &= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
          &= int_0^r int_0^h 2pi rho,dz,drho \
          &= int_0^r 2pi rho h ,drho \
          &= left. pi rho^2 h right|_0^r = pi r^2 h
          end{align*}$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1696342%2fderiving-the-volume-of-a-right-circular-cylinder-using-triple-integral%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
              $$begin{align*}
              iiint_{mathrm{Cyl}} dV
              &= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
              &= int_0^r int_0^h 2pi rho,dz,drho \
              &= int_0^r 2pi rho h ,drho \
              &= left. pi rho^2 h right|_0^r = pi r^2 h
              end{align*}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
                $$begin{align*}
                iiint_{mathrm{Cyl}} dV
                &= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
                &= int_0^r int_0^h 2pi rho,dz,drho \
                &= int_0^r 2pi rho h ,drho \
                &= left. pi rho^2 h right|_0^r = pi r^2 h
                end{align*}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
                  $$begin{align*}
                  iiint_{mathrm{Cyl}} dV
                  &= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
                  &= int_0^r int_0^h 2pi rho,dz,drho \
                  &= int_0^r 2pi rho h ,drho \
                  &= left. pi rho^2 h right|_0^r = pi r^2 h
                  end{align*}$$






                  share|cite|improve this answer









                  $endgroup$



                  Let $r$ be the radius and $h$ be the height. The ranges for each variable are given by $rho in [0,r], z in [0,h], phi in ]-pi,pi]$. The volume van be evaluated using a triple integral
                  $$begin{align*}
                  iiint_{mathrm{Cyl}} dV
                  &= int_0^r int_0^h int_{-pi}^pi rho ,dphi,dz,drho \
                  &= int_0^r int_0^h 2pi rho,dz,drho \
                  &= int_0^r 2pi rho h ,drho \
                  &= left. pi rho^2 h right|_0^r = pi r^2 h
                  end{align*}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Mar 13 '16 at 23:38









                  Henricus V.Henricus V.

                  15.2k22149




                  15.2k22149























                      0












                      $begingroup$

                      Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$






                          share|cite|improve this answer









                          $endgroup$



                          Let $C = { (x,y,z) in Bbb R^3 mid x^2+y^2 leq R^2, ~0leq z leq h }$. If you put $f(r, theta, z) = (rcostheta, rsintheta, z)$, then by the change of variables theorem we'll have: $$begin{align} {rm Vol}(C) &= int_C 1 = int_{f([0,R]times[0,2pi]times[0,h])}1 \ &= int_{[0,R]times[0,2pi]times[0,h]}|det Df(r,theta,z)|,{rm d}r,{rm d} theta,{rm d}z \ &= int_0^hint_0^{2pi}int_0^R r ,{rm d}r,{rm d}theta,{rm d}z \ &=2pi h frac{r^2}{2}bigg|_0^R = pi R^2h. end{align}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 13 '16 at 23:41









                          Ivo TerekIvo Terek

                          46.3k954142




                          46.3k954142






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1696342%2fderiving-the-volume-of-a-right-circular-cylinder-using-triple-integral%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$