minimum value of $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$
$begingroup$
If $a,b,c>0.$ Then minimum value of
$(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$
Try: Arithmetic geometric inequality
$8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$
and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$
so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$
could some help me to solve it. answer is $64$
inequality
$endgroup$
add a comment |
$begingroup$
If $a,b,c>0.$ Then minimum value of
$(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$
Try: Arithmetic geometric inequality
$8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$
and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$
so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$
could some help me to solve it. answer is $64$
inequality
$endgroup$
add a comment |
$begingroup$
If $a,b,c>0.$ Then minimum value of
$(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$
Try: Arithmetic geometric inequality
$8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$
and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$
so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$
could some help me to solve it. answer is $64$
inequality
$endgroup$
If $a,b,c>0.$ Then minimum value of
$(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$
Try: Arithmetic geometric inequality
$8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$
and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$
so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$
could some help me to solve it. answer is $64$
inequality
inequality
asked Jan 17 at 14:55
DXTDXT
5,7752731
5,7752731
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
$$
(2a)^2 + (2a)^2 + b^2 + c^2
$$
and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
$$
frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
$$
The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.
One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
$$
frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
$$
$endgroup$
add a comment |
$begingroup$
Hint: Another way is to consider Hölder's Inequality
$$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$
Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.
$endgroup$
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077084%2fminimum-value-of-8a2b2c2-cdot-a-1b-1c-12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
$$
(2a)^2 + (2a)^2 + b^2 + c^2
$$
and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
$$
frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
$$
The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.
One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
$$
frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
$$
$endgroup$
add a comment |
$begingroup$
Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
$$
(2a)^2 + (2a)^2 + b^2 + c^2
$$
and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
$$
frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
$$
The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.
One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
$$
frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
$$
$endgroup$
add a comment |
$begingroup$
Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
$$
(2a)^2 + (2a)^2 + b^2 + c^2
$$
and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
$$
frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
$$
The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.
One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
$$
frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
$$
$endgroup$
Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
$$
(2a)^2 + (2a)^2 + b^2 + c^2
$$
and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
$$
frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
$$
The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.
One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
$$
frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
$$
edited Jan 17 at 15:50
answered Jan 17 at 15:09
Martin RMartin R
29.3k33558
29.3k33558
add a comment |
add a comment |
$begingroup$
Hint: Another way is to consider Hölder's Inequality
$$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$
Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.
$endgroup$
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
add a comment |
$begingroup$
Hint: Another way is to consider Hölder's Inequality
$$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$
Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.
$endgroup$
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
add a comment |
$begingroup$
Hint: Another way is to consider Hölder's Inequality
$$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$
Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.
$endgroup$
Hint: Another way is to consider Hölder's Inequality
$$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$
Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.
answered Jan 17 at 15:57
MacavityMacavity
35.5k52554
35.5k52554
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
add a comment |
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Yes! – Why did I not think of that?
$endgroup$
– Martin R
Jan 17 at 16:00
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
$begingroup$
Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
$endgroup$
– Macavity
Jan 17 at 16:02
1
1
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
$begingroup$
Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
$endgroup$
– Martin R
Jan 17 at 16:07
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077084%2fminimum-value-of-8a2b2c2-cdot-a-1b-1c-12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown