minimum value of $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$












3












$begingroup$



If $a,b,c>0.$ Then minimum value of



$(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$




Try: Arithmetic geometric inequality



$8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$



and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$



so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$



could some help me to solve it. answer is $64$










share|cite|improve this question









$endgroup$

















    3












    $begingroup$



    If $a,b,c>0.$ Then minimum value of



    $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$




    Try: Arithmetic geometric inequality



    $8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$



    and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$



    so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$



    could some help me to solve it. answer is $64$










    share|cite|improve this question









    $endgroup$















      3












      3








      3


      1



      $begingroup$



      If $a,b,c>0.$ Then minimum value of



      $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$




      Try: Arithmetic geometric inequality



      $8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$



      and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$



      so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$



      could some help me to solve it. answer is $64$










      share|cite|improve this question









      $endgroup$





      If $a,b,c>0.$ Then minimum value of



      $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2$




      Try: Arithmetic geometric inequality



      $8a^2+b^2+c^2geq 3cdot 2sqrt{2}(abc)^{1/3}$



      and $(a^{-1}+b^{-1}+c^{-1})geq 3(abc)^{-1/3}$



      so $(8a^2+b^2+c^2)cdot (a^{-1}+b^{-1}+c^{-1})^2geq 18sqrt{2}(abc)^{-1/3}$



      could some help me to solve it. answer is $64$







      inequality






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 17 at 14:55









      DXTDXT

      5,7752731




      5,7752731






















          2 Answers
          2






          active

          oldest

          votes


















          6












          $begingroup$

          Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
          $$
          (2a)^2 + (2a)^2 + b^2 + c^2
          $$

          and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
          $$
          frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
          $$



          The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.



          One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
          $$
          frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
          le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
          $$






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            Hint: Another way is to consider Hölder's Inequality



            $$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$



            Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Yes! – Why did I not think of that?
              $endgroup$
              – Martin R
              Jan 17 at 16:00










            • $begingroup$
              Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
              $endgroup$
              – Macavity
              Jan 17 at 16:02






            • 1




              $begingroup$
              Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
              $endgroup$
              – Martin R
              Jan 17 at 16:07











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077084%2fminimum-value-of-8a2b2c2-cdot-a-1b-1c-12%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
            $$
            (2a)^2 + (2a)^2 + b^2 + c^2
            $$

            and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
            $$
            frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
            $$



            The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.



            One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
            $$
            frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
            le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
            $$






            share|cite|improve this answer











            $endgroup$


















              6












              $begingroup$

              Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
              $$
              (2a)^2 + (2a)^2 + b^2 + c^2
              $$

              and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
              $$
              frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
              $$



              The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.



              One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
              $$
              frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
              le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
              $$






              share|cite|improve this answer











              $endgroup$
















                6












                6








                6





                $begingroup$

                Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
                $$
                (2a)^2 + (2a)^2 + b^2 + c^2
                $$

                and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
                $$
                frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
                $$



                The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.



                One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
                $$
                frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
                le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
                $$






                share|cite|improve this answer











                $endgroup$



                Hint: Apply $AM ge GM$ not to $8a^2 + b^2 + c^2$, but to
                $$
                (2a)^2 + (2a)^2 + b^2 + c^2
                $$

                and $HM le GM$ not to $a^{-1}+b^{-1}+c^{-1}$, but to
                $$
                frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}
                $$



                The “partitions” are chosen in such a way that equality can hold simultaneously in both estimates, in this case when $2a=b=c$.



                One can also use the relationships between generalized means, here “harmonic mean $le$ quadratic mean”:
                $$
                frac{4}{frac{1}{2a} + frac{1}{2a} + frac{1}{b} + frac{1}{c}}
                le sqrt{frac{(2a)^2 + (2a)^2 + b^2 + c^2}{4}}
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 17 at 15:50

























                answered Jan 17 at 15:09









                Martin RMartin R

                29.3k33558




                29.3k33558























                    2












                    $begingroup$

                    Hint: Another way is to consider Hölder's Inequality



                    $$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$



                    Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Yes! – Why did I not think of that?
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:00










                    • $begingroup$
                      Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                      $endgroup$
                      – Macavity
                      Jan 17 at 16:02






                    • 1




                      $begingroup$
                      Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:07
















                    2












                    $begingroup$

                    Hint: Another way is to consider Hölder's Inequality



                    $$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$



                    Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Yes! – Why did I not think of that?
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:00










                    • $begingroup$
                      Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                      $endgroup$
                      – Macavity
                      Jan 17 at 16:02






                    • 1




                      $begingroup$
                      Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:07














                    2












                    2








                    2





                    $begingroup$

                    Hint: Another way is to consider Hölder's Inequality



                    $$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$



                    Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.






                    share|cite|improve this answer









                    $endgroup$



                    Hint: Another way is to consider Hölder's Inequality



                    $$(8a^2+b^2+c^2)(a^{-1}+b^{-1}+c^{-1})^2 geqslant (2+1+1)^3$$



                    Equality is possible when $8a^3=b^3=c^3=1$ (why?), so this is the minimum.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 17 at 15:57









                    MacavityMacavity

                    35.5k52554




                    35.5k52554












                    • $begingroup$
                      Yes! – Why did I not think of that?
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:00










                    • $begingroup$
                      Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                      $endgroup$
                      – Macavity
                      Jan 17 at 16:02






                    • 1




                      $begingroup$
                      Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:07


















                    • $begingroup$
                      Yes! – Why did I not think of that?
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:00










                    • $begingroup$
                      Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                      $endgroup$
                      – Macavity
                      Jan 17 at 16:02






                    • 1




                      $begingroup$
                      Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                      $endgroup$
                      – Martin R
                      Jan 17 at 16:07
















                    $begingroup$
                    Yes! – Why did I not think of that?
                    $endgroup$
                    – Martin R
                    Jan 17 at 16:00




                    $begingroup$
                    Yes! – Why did I not think of that?
                    $endgroup$
                    – Martin R
                    Jan 17 at 16:00












                    $begingroup$
                    Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                    $endgroup$
                    – Macavity
                    Jan 17 at 16:02




                    $begingroup$
                    Essentially convexity - whether AM-GM-HM or Hölder or Jensen... so not very different after all.
                    $endgroup$
                    – Macavity
                    Jan 17 at 16:02




                    1




                    1




                    $begingroup$
                    Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                    $endgroup$
                    – Martin R
                    Jan 17 at 16:07




                    $begingroup$
                    Yes, but this approach works with arbitrary coefficients and does not require to find a suitable partition of the sums.
                    $endgroup$
                    – Martin R
                    Jan 17 at 16:07


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077084%2fminimum-value-of-8a2b2c2-cdot-a-1b-1c-12%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    SQL update select statement

                    'app-layout' is not a known element: how to share Component with different Modules