Particular integral of $x^2 y''-xy'+4y=cos(ln{x})+xcdot sin(ln{x})$












0












$begingroup$


I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.



Complementary Function:



Transcript of image:



Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).



Let $x = e^z Rightarrow z = log x$

and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$

so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)

Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$

Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
    $endgroup$
    – LutzL
    Jan 17 at 15:36
















0












$begingroup$


I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.



Complementary Function:



Transcript of image:



Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).



Let $x = e^z Rightarrow z = log x$

and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$

so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)

Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$

Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
    $endgroup$
    – LutzL
    Jan 17 at 15:36














0












0








0





$begingroup$


I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.



Complementary Function:



Transcript of image:



Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).



Let $x = e^z Rightarrow z = log x$

and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$

so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)

Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$

Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.










share|cite|improve this question











$endgroup$




I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.



Complementary Function:



Transcript of image:



Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).



Let $x = e^z Rightarrow z = log x$

and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$

so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)

Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$

Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 17:39









Oscar Lanzi

12.8k12136




12.8k12136










asked Jan 17 at 15:21









M.M.M.M.

185




185








  • 1




    $begingroup$
    And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
    $endgroup$
    – LutzL
    Jan 17 at 15:36














  • 1




    $begingroup$
    And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
    $endgroup$
    – LutzL
    Jan 17 at 15:36








1




1




$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36




$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36










1 Answer
1






active

oldest

votes


















2












$begingroup$

Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077108%2fparticular-integral-of-x2-y-xy4y-cos-lnxx-cdot-sin-lnx%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Particular solution we find in form
    $$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
    Substitute this form in equation
    $$y''-2y'+4y=e^zcos z+cos z.$$
    We get
    $$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
    $$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
    Then
    $$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
    frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Particular solution we find in form
      $$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
      Substitute this form in equation
      $$y''-2y'+4y=e^zcos z+cos z.$$
      We get
      $$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
      $$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
      Then
      $$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
      frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Particular solution we find in form
        $$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
        Substitute this form in equation
        $$y''-2y'+4y=e^zcos z+cos z.$$
        We get
        $$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
        $$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
        Then
        $$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
        frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$






        share|cite|improve this answer











        $endgroup$



        Particular solution we find in form
        $$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
        Substitute this form in equation
        $$y''-2y'+4y=e^zcos z+cos z.$$
        We get
        $$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
        $$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
        Then
        $$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
        frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 17 at 17:31

























        answered Jan 17 at 15:50









        Aleksas DomarkasAleksas Domarkas

        1,33716




        1,33716






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077108%2fparticular-integral-of-x2-y-xy4y-cos-lnxx-cdot-sin-lnx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]