Particular integral of $x^2 y''-xy'+4y=cos(ln{x})+xcdot sin(ln{x})$
$begingroup$
I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.
Transcript of image:
Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).
Let $x = e^z Rightarrow z = log x$
and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$
so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)
Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$
Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.
Transcript of image:
Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).
Let $x = e^z Rightarrow z = log x$
and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$
so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)
Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$
Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.
ordinary-differential-equations
$endgroup$
1
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36
add a comment |
$begingroup$
I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.
Transcript of image:
Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).
Let $x = e^z Rightarrow z = log x$
and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$
so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)
Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$
Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.
ordinary-differential-equations
$endgroup$
I have found the complementary Function, but can't understand how to find the particular integral because with UC method. Please someone help me.
Transcript of image:
Q: $x^2 y'' - xy' + 4y = cos(ln x) + xsin(ln x)$ (labelled equation 1).
Let $x = e^z Rightarrow z = log x$
and $xy' = Delta y$, $x^2y'' = Delta(Delta-1)y$ where $Delta = frac{mathrm{d}}{mathrm{d}z}$
so, equation (1) becomes,
$Delta(Delta - 1)y - Delta y + 4y = cos z + e^zsin z$
$(Delta^2 - 2Delta + 4) y = cos z + e^z sin z$ (labelled equation 2)
Auxilliary equation of equation (2) is
$m^2 - 2m + 4 = 0$
$Rightarrow m = frac{2pm sqrt{4 - 16}}{2}$
$m = 1 pm sqrt{3}i$
Therefore Complementary function, $y_c = e^z c_a cos sqrt{3}z + e^zc_2sinsqrt{3}z$.
ordinary-differential-equations
ordinary-differential-equations
edited Jan 17 at 17:39
Oscar Lanzi
12.8k12136
12.8k12136
asked Jan 17 at 15:21
M.M.M.M.
185
185
1
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36
add a comment |
1
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36
1
1
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077108%2fparticular-integral-of-x2-y-xy4y-cos-lnxx-cdot-sin-lnx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$
$endgroup$
add a comment |
$begingroup$
Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$
$endgroup$
add a comment |
$begingroup$
Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$
$endgroup$
Particular solution we find in form
$$y=e^z(Acos z+Bsin z)+Ccos z+Dsin z$$
Substitute this form in equation
$$y''-2y'+4y=e^zcos z+cos z.$$
We get
$$left( 2 B, {{e}^{z}}+3 D+2 Cright) sin z+left( 2 A, {{e}^{z}}-2 D+3 Cright) cos z={{e}^{z}} sin z+cos z,$$
$$A=0,quad B=frac12,quad C=frac{3}{13},quad D=-frac{2}{13}.$$
Then
$$y_p=frac{e^zsin z}2-frac{2sin z}{13}+frac{3cos z}{13}\=
frac{xsin(ln x)}2-frac{2sin(ln x)}{13}+frac{3cos(ln x)}{13}$$
edited Jan 17 at 17:31
answered Jan 17 at 15:50
Aleksas DomarkasAleksas Domarkas
1,33716
1,33716
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077108%2fparticular-integral-of-x2-y-xy4y-cos-lnxx-cdot-sin-lnx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
And now you need a particular solution for the right side $cos z+e^zsin z$. As that is not in resonance to the homogeneous solution, the method of undetermined coefficients should be easy to apply.
$endgroup$
– LutzL
Jan 17 at 15:36