Coordinate independence of connections
$begingroup$
So I am trying to prove the following:
Let $V rightarrow M$ be a vector bundle $nabla$ a connection on $V$. Then there is a unique sequence of linear maps
$$ Omega^0(M;V) xrightarrow{nabla} Omega^1(M;V) xrightarrow{nabla} cdots $$
such that $nabla$ coincdies with the connection for $p=0$ and such that $$nabla (w wedge s ) = dw wedge s + (-1)^{|w|} w wedge nabla s (*) $$
Where $Omega^k(M;V) := Omega^k(M) otimes_{Omega^0(M)} Omega^0(V)$, where $Omega^k(M)$ are the smooth $k$-forms ($k=0$ give smooth functions), and $Omega^0(V)$ are the smooth sections of $V rightarrow M$.
A connection $nabla:Omega^0(M;V) rightarrow Omega^1(M;V)$ is defined to be a map that satisfies
$$ nabla (fs) = df otimes s + f nabla s $$
So I wanted to define $nabla$ locally. Since given a local frame $e_i$ for $V$, we may write $s = sum w_i otimes e_i$ and we must have
$$ nabla s = sum_i dw_i otimes e_i + w _i wedge nabla e_i $$
The problem is I could not show this is coordinate independent.
My failed attempt:
given another local frame $f_1, ldots, f_r$ of $V$. Suppose $e = Af$, so $e_i = sum A_{ij} f_j $ where $A_{ij} in C^infty(U)$.
Then
begin{align*}
sum_i Big(dw_i otimes sum A_{ij} f_j +w_i wedge nabla (sum A_{ij} f_j ) Big) &= sum_i Big(sum_j A_{ij} dw_i otimes f_j+ w_i wedge (sum_j dA_{ij} otimes f_j + A_{ij} nabla f_j ) Big)
end{align*}
differential-geometry algebraic-topology connections
$endgroup$
add a comment |
$begingroup$
So I am trying to prove the following:
Let $V rightarrow M$ be a vector bundle $nabla$ a connection on $V$. Then there is a unique sequence of linear maps
$$ Omega^0(M;V) xrightarrow{nabla} Omega^1(M;V) xrightarrow{nabla} cdots $$
such that $nabla$ coincdies with the connection for $p=0$ and such that $$nabla (w wedge s ) = dw wedge s + (-1)^{|w|} w wedge nabla s (*) $$
Where $Omega^k(M;V) := Omega^k(M) otimes_{Omega^0(M)} Omega^0(V)$, where $Omega^k(M)$ are the smooth $k$-forms ($k=0$ give smooth functions), and $Omega^0(V)$ are the smooth sections of $V rightarrow M$.
A connection $nabla:Omega^0(M;V) rightarrow Omega^1(M;V)$ is defined to be a map that satisfies
$$ nabla (fs) = df otimes s + f nabla s $$
So I wanted to define $nabla$ locally. Since given a local frame $e_i$ for $V$, we may write $s = sum w_i otimes e_i$ and we must have
$$ nabla s = sum_i dw_i otimes e_i + w _i wedge nabla e_i $$
The problem is I could not show this is coordinate independent.
My failed attempt:
given another local frame $f_1, ldots, f_r$ of $V$. Suppose $e = Af$, so $e_i = sum A_{ij} f_j $ where $A_{ij} in C^infty(U)$.
Then
begin{align*}
sum_i Big(dw_i otimes sum A_{ij} f_j +w_i wedge nabla (sum A_{ij} f_j ) Big) &= sum_i Big(sum_j A_{ij} dw_i otimes f_j+ w_i wedge (sum_j dA_{ij} otimes f_j + A_{ij} nabla f_j ) Big)
end{align*}
differential-geometry algebraic-topology connections
$endgroup$
add a comment |
$begingroup$
So I am trying to prove the following:
Let $V rightarrow M$ be a vector bundle $nabla$ a connection on $V$. Then there is a unique sequence of linear maps
$$ Omega^0(M;V) xrightarrow{nabla} Omega^1(M;V) xrightarrow{nabla} cdots $$
such that $nabla$ coincdies with the connection for $p=0$ and such that $$nabla (w wedge s ) = dw wedge s + (-1)^{|w|} w wedge nabla s (*) $$
Where $Omega^k(M;V) := Omega^k(M) otimes_{Omega^0(M)} Omega^0(V)$, where $Omega^k(M)$ are the smooth $k$-forms ($k=0$ give smooth functions), and $Omega^0(V)$ are the smooth sections of $V rightarrow M$.
A connection $nabla:Omega^0(M;V) rightarrow Omega^1(M;V)$ is defined to be a map that satisfies
$$ nabla (fs) = df otimes s + f nabla s $$
So I wanted to define $nabla$ locally. Since given a local frame $e_i$ for $V$, we may write $s = sum w_i otimes e_i$ and we must have
$$ nabla s = sum_i dw_i otimes e_i + w _i wedge nabla e_i $$
The problem is I could not show this is coordinate independent.
My failed attempt:
given another local frame $f_1, ldots, f_r$ of $V$. Suppose $e = Af$, so $e_i = sum A_{ij} f_j $ where $A_{ij} in C^infty(U)$.
Then
begin{align*}
sum_i Big(dw_i otimes sum A_{ij} f_j +w_i wedge nabla (sum A_{ij} f_j ) Big) &= sum_i Big(sum_j A_{ij} dw_i otimes f_j+ w_i wedge (sum_j dA_{ij} otimes f_j + A_{ij} nabla f_j ) Big)
end{align*}
differential-geometry algebraic-topology connections
$endgroup$
So I am trying to prove the following:
Let $V rightarrow M$ be a vector bundle $nabla$ a connection on $V$. Then there is a unique sequence of linear maps
$$ Omega^0(M;V) xrightarrow{nabla} Omega^1(M;V) xrightarrow{nabla} cdots $$
such that $nabla$ coincdies with the connection for $p=0$ and such that $$nabla (w wedge s ) = dw wedge s + (-1)^{|w|} w wedge nabla s (*) $$
Where $Omega^k(M;V) := Omega^k(M) otimes_{Omega^0(M)} Omega^0(V)$, where $Omega^k(M)$ are the smooth $k$-forms ($k=0$ give smooth functions), and $Omega^0(V)$ are the smooth sections of $V rightarrow M$.
A connection $nabla:Omega^0(M;V) rightarrow Omega^1(M;V)$ is defined to be a map that satisfies
$$ nabla (fs) = df otimes s + f nabla s $$
So I wanted to define $nabla$ locally. Since given a local frame $e_i$ for $V$, we may write $s = sum w_i otimes e_i$ and we must have
$$ nabla s = sum_i dw_i otimes e_i + w _i wedge nabla e_i $$
The problem is I could not show this is coordinate independent.
My failed attempt:
given another local frame $f_1, ldots, f_r$ of $V$. Suppose $e = Af$, so $e_i = sum A_{ij} f_j $ where $A_{ij} in C^infty(U)$.
Then
begin{align*}
sum_i Big(dw_i otimes sum A_{ij} f_j +w_i wedge nabla (sum A_{ij} f_j ) Big) &= sum_i Big(sum_j A_{ij} dw_i otimes f_j+ w_i wedge (sum_j dA_{ij} otimes f_j + A_{ij} nabla f_j ) Big)
end{align*}
differential-geometry algebraic-topology connections
differential-geometry algebraic-topology connections
asked Jan 17 at 8:18
CL.CL.
2,2352925
2,2352925
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since $ A_{ij} dw_i + w_i dA_{ij} = d(w_i A_{ij})$ for all $i$ and $j$, the expression on the right-hand side reduces to
$$ sum_{i}sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right),$$
which is precisely the expression you want.
Edit: If the $w_i$'s are $k$-forms (rather than just smooth functions), then you would need to introduce an extra sign in your proposed definition:
$$ nabla s = sum_i dw_i otimes e_i + (-1)^k w_i wedge nabla e_i.$$
You'll end up with a corresponding factor of $(-1)^k$ on the right-hand side of your equation. Fortunately, everything works out because $A_{ij} dw_i + (-1)^k w_i wedge dA_{ij} = d(w_iA_{ij})$.
$endgroup$
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076733%2fcoordinate-independence-of-connections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since $ A_{ij} dw_i + w_i dA_{ij} = d(w_i A_{ij})$ for all $i$ and $j$, the expression on the right-hand side reduces to
$$ sum_{i}sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right),$$
which is precisely the expression you want.
Edit: If the $w_i$'s are $k$-forms (rather than just smooth functions), then you would need to introduce an extra sign in your proposed definition:
$$ nabla s = sum_i dw_i otimes e_i + (-1)^k w_i wedge nabla e_i.$$
You'll end up with a corresponding factor of $(-1)^k$ on the right-hand side of your equation. Fortunately, everything works out because $A_{ij} dw_i + (-1)^k w_i wedge dA_{ij} = d(w_iA_{ij})$.
$endgroup$
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
add a comment |
$begingroup$
Since $ A_{ij} dw_i + w_i dA_{ij} = d(w_i A_{ij})$ for all $i$ and $j$, the expression on the right-hand side reduces to
$$ sum_{i}sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right),$$
which is precisely the expression you want.
Edit: If the $w_i$'s are $k$-forms (rather than just smooth functions), then you would need to introduce an extra sign in your proposed definition:
$$ nabla s = sum_i dw_i otimes e_i + (-1)^k w_i wedge nabla e_i.$$
You'll end up with a corresponding factor of $(-1)^k$ on the right-hand side of your equation. Fortunately, everything works out because $A_{ij} dw_i + (-1)^k w_i wedge dA_{ij} = d(w_iA_{ij})$.
$endgroup$
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
add a comment |
$begingroup$
Since $ A_{ij} dw_i + w_i dA_{ij} = d(w_i A_{ij})$ for all $i$ and $j$, the expression on the right-hand side reduces to
$$ sum_{i}sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right),$$
which is precisely the expression you want.
Edit: If the $w_i$'s are $k$-forms (rather than just smooth functions), then you would need to introduce an extra sign in your proposed definition:
$$ nabla s = sum_i dw_i otimes e_i + (-1)^k w_i wedge nabla e_i.$$
You'll end up with a corresponding factor of $(-1)^k$ on the right-hand side of your equation. Fortunately, everything works out because $A_{ij} dw_i + (-1)^k w_i wedge dA_{ij} = d(w_iA_{ij})$.
$endgroup$
Since $ A_{ij} dw_i + w_i dA_{ij} = d(w_i A_{ij})$ for all $i$ and $j$, the expression on the right-hand side reduces to
$$ sum_{i}sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right),$$
which is precisely the expression you want.
Edit: If the $w_i$'s are $k$-forms (rather than just smooth functions), then you would need to introduce an extra sign in your proposed definition:
$$ nabla s = sum_i dw_i otimes e_i + (-1)^k w_i wedge nabla e_i.$$
You'll end up with a corresponding factor of $(-1)^k$ on the right-hand side of your equation. Fortunately, everything works out because $A_{ij} dw_i + (-1)^k w_i wedge dA_{ij} = d(w_iA_{ij})$.
edited Jan 17 at 9:01
answered Jan 17 at 8:35
Kenny WongKenny Wong
19.1k21440
19.1k21440
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
add a comment |
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
Sorry, I am still unclear, I thought my desired expression is $$ sum dw_j otimes f_j + w_j nabla f_j$$ I thought $A_{ij}$ should only come in play to the sections $Omega^0(V)$ and I still use the same local coordinates for $Omega^1(M)$.
$endgroup$
– CL.
Jan 17 at 8:42
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
@CL. No, $s = sum_{j} w'_j otimes f_j$, where $w'_j := sum_j w_i A_{ij} $. So you should be aiming for $s = sum_j left( dw'_j otimes f_j + w'_j nabla f_j right) = sum_j left( d(w_i A_{ij}) otimes f_j + (w_i A_{ij}) nabla f_j right)$
$endgroup$
– Kenny Wong
Jan 17 at 8:46
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
Yes, thanks a lot.
$endgroup$
– CL.
Jan 17 at 8:54
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
$begingroup$
thanks for the edit too .
$endgroup$
– CL.
Jan 22 at 8:32
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076733%2fcoordinate-independence-of-connections%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown