differentiability of $(x^2-y)y^2/(x^4+y^2)$?
$begingroup$
$f(x,y)=(x^2-y)y^2/(x^4+y^2)$ for every $(x,y)neq (0,0)$ and $f(x,y)=(0,0)$ on $(0,0)$.
I am trying to find out whether this function is differentiable or not.
I proved that its continuous on the origin and I have calculated the definition of derivative (using limit) for different paths but I could not prove that the function is not differentiable so I am guessing that it is but I do not know how to prove it.
calculus multivariable-calculus derivatives
$endgroup$
add a comment |
$begingroup$
$f(x,y)=(x^2-y)y^2/(x^4+y^2)$ for every $(x,y)neq (0,0)$ and $f(x,y)=(0,0)$ on $(0,0)$.
I am trying to find out whether this function is differentiable or not.
I proved that its continuous on the origin and I have calculated the definition of derivative (using limit) for different paths but I could not prove that the function is not differentiable so I am guessing that it is but I do not know how to prove it.
calculus multivariable-calculus derivatives
$endgroup$
1
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19
add a comment |
$begingroup$
$f(x,y)=(x^2-y)y^2/(x^4+y^2)$ for every $(x,y)neq (0,0)$ and $f(x,y)=(0,0)$ on $(0,0)$.
I am trying to find out whether this function is differentiable or not.
I proved that its continuous on the origin and I have calculated the definition of derivative (using limit) for different paths but I could not prove that the function is not differentiable so I am guessing that it is but I do not know how to prove it.
calculus multivariable-calculus derivatives
$endgroup$
$f(x,y)=(x^2-y)y^2/(x^4+y^2)$ for every $(x,y)neq (0,0)$ and $f(x,y)=(0,0)$ on $(0,0)$.
I am trying to find out whether this function is differentiable or not.
I proved that its continuous on the origin and I have calculated the definition of derivative (using limit) for different paths but I could not prove that the function is not differentiable so I am guessing that it is but I do not know how to prove it.
calculus multivariable-calculus derivatives
calculus multivariable-calculus derivatives
asked Jan 17 at 0:04
S.JafariS.Jafari
132
132
1
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19
add a comment |
1
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19
1
1
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I am going to introduce the definition of differentiability of a function. A function $f : mathbb{R}^n to mathbb{R}^m$ is differenctiable in $x_0in mathbb{R}^n$ if there exists a linear function $L:mathbb{R}^ntomathbb{R}^m$ such that:
$$
lim_{hto (0,0)}frac{left|left|,f(x_0+h)-f(x_0)-L(h)right|right|}{left|left|hright|right|}=0
$$
The matrix associated to the linear function $L$ is the Jacobian matrix.
Then, let's calculate the Jacobian matrix of:
$$
f(x,y)=begin{cases}
displaystylefrac{(x^2-y)y^2}{x^4+y^2} & text{if } (x,y)neq (0,0) \
0 & text{if } (x,y)=(0,0)
end{cases}
$$
in $(x,y)=(0,0)$. First:
$$
frac{partial f}{partial x}(0,0) = lim_{hto 0} frac{0}{h^4}=0
$$
$$
frac{partial f}{partial y}(0,0) = lim_{hto 0} frac{-h^3}{h^2}=0
$$
Then the Jacobian matrix in $(0,0)$ of $f$ is $J_{(0,0)}(,f)=left(begin{array}{cc}
0 & 0
end{array}right)$, the if $L$ exists, it is $L(x,y)=left(begin{array}{cc}
0 & 0
end{array}right)left(begin{array}{c}
x \
y \
end{array}right)=0$. Then:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)right|right|}{left|left|(x,y)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}left|frac{(x^2-y)y^2}{x^4+y^2},right|frac{1}{left|left|(x,y)right|right|} \
end{eqnarray}
If we use the path $y=x$:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{(x^2-x)x^2}{x^4+x^2},right|frac{1}{left|left|(x,x)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{x^2-x}{x^2+1},right|frac{1}{|x|left|left|(1,1)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} lim_{xto 0}left|frac{x-1}{x^2+1},right| \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} neq 0 \
end{eqnarray}
Thus $f$ is not differentiable in $(0,0)$
$endgroup$
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076452%2fdifferentiability-of-x2-yy2-x4y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I am going to introduce the definition of differentiability of a function. A function $f : mathbb{R}^n to mathbb{R}^m$ is differenctiable in $x_0in mathbb{R}^n$ if there exists a linear function $L:mathbb{R}^ntomathbb{R}^m$ such that:
$$
lim_{hto (0,0)}frac{left|left|,f(x_0+h)-f(x_0)-L(h)right|right|}{left|left|hright|right|}=0
$$
The matrix associated to the linear function $L$ is the Jacobian matrix.
Then, let's calculate the Jacobian matrix of:
$$
f(x,y)=begin{cases}
displaystylefrac{(x^2-y)y^2}{x^4+y^2} & text{if } (x,y)neq (0,0) \
0 & text{if } (x,y)=(0,0)
end{cases}
$$
in $(x,y)=(0,0)$. First:
$$
frac{partial f}{partial x}(0,0) = lim_{hto 0} frac{0}{h^4}=0
$$
$$
frac{partial f}{partial y}(0,0) = lim_{hto 0} frac{-h^3}{h^2}=0
$$
Then the Jacobian matrix in $(0,0)$ of $f$ is $J_{(0,0)}(,f)=left(begin{array}{cc}
0 & 0
end{array}right)$, the if $L$ exists, it is $L(x,y)=left(begin{array}{cc}
0 & 0
end{array}right)left(begin{array}{c}
x \
y \
end{array}right)=0$. Then:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)right|right|}{left|left|(x,y)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}left|frac{(x^2-y)y^2}{x^4+y^2},right|frac{1}{left|left|(x,y)right|right|} \
end{eqnarray}
If we use the path $y=x$:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{(x^2-x)x^2}{x^4+x^2},right|frac{1}{left|left|(x,x)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{x^2-x}{x^2+1},right|frac{1}{|x|left|left|(1,1)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} lim_{xto 0}left|frac{x-1}{x^2+1},right| \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} neq 0 \
end{eqnarray}
Thus $f$ is not differentiable in $(0,0)$
$endgroup$
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
add a comment |
$begingroup$
I am going to introduce the definition of differentiability of a function. A function $f : mathbb{R}^n to mathbb{R}^m$ is differenctiable in $x_0in mathbb{R}^n$ if there exists a linear function $L:mathbb{R}^ntomathbb{R}^m$ such that:
$$
lim_{hto (0,0)}frac{left|left|,f(x_0+h)-f(x_0)-L(h)right|right|}{left|left|hright|right|}=0
$$
The matrix associated to the linear function $L$ is the Jacobian matrix.
Then, let's calculate the Jacobian matrix of:
$$
f(x,y)=begin{cases}
displaystylefrac{(x^2-y)y^2}{x^4+y^2} & text{if } (x,y)neq (0,0) \
0 & text{if } (x,y)=(0,0)
end{cases}
$$
in $(x,y)=(0,0)$. First:
$$
frac{partial f}{partial x}(0,0) = lim_{hto 0} frac{0}{h^4}=0
$$
$$
frac{partial f}{partial y}(0,0) = lim_{hto 0} frac{-h^3}{h^2}=0
$$
Then the Jacobian matrix in $(0,0)$ of $f$ is $J_{(0,0)}(,f)=left(begin{array}{cc}
0 & 0
end{array}right)$, the if $L$ exists, it is $L(x,y)=left(begin{array}{cc}
0 & 0
end{array}right)left(begin{array}{c}
x \
y \
end{array}right)=0$. Then:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)right|right|}{left|left|(x,y)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}left|frac{(x^2-y)y^2}{x^4+y^2},right|frac{1}{left|left|(x,y)right|right|} \
end{eqnarray}
If we use the path $y=x$:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{(x^2-x)x^2}{x^4+x^2},right|frac{1}{left|left|(x,x)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{x^2-x}{x^2+1},right|frac{1}{|x|left|left|(1,1)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} lim_{xto 0}left|frac{x-1}{x^2+1},right| \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} neq 0 \
end{eqnarray}
Thus $f$ is not differentiable in $(0,0)$
$endgroup$
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
add a comment |
$begingroup$
I am going to introduce the definition of differentiability of a function. A function $f : mathbb{R}^n to mathbb{R}^m$ is differenctiable in $x_0in mathbb{R}^n$ if there exists a linear function $L:mathbb{R}^ntomathbb{R}^m$ such that:
$$
lim_{hto (0,0)}frac{left|left|,f(x_0+h)-f(x_0)-L(h)right|right|}{left|left|hright|right|}=0
$$
The matrix associated to the linear function $L$ is the Jacobian matrix.
Then, let's calculate the Jacobian matrix of:
$$
f(x,y)=begin{cases}
displaystylefrac{(x^2-y)y^2}{x^4+y^2} & text{if } (x,y)neq (0,0) \
0 & text{if } (x,y)=(0,0)
end{cases}
$$
in $(x,y)=(0,0)$. First:
$$
frac{partial f}{partial x}(0,0) = lim_{hto 0} frac{0}{h^4}=0
$$
$$
frac{partial f}{partial y}(0,0) = lim_{hto 0} frac{-h^3}{h^2}=0
$$
Then the Jacobian matrix in $(0,0)$ of $f$ is $J_{(0,0)}(,f)=left(begin{array}{cc}
0 & 0
end{array}right)$, the if $L$ exists, it is $L(x,y)=left(begin{array}{cc}
0 & 0
end{array}right)left(begin{array}{c}
x \
y \
end{array}right)=0$. Then:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)right|right|}{left|left|(x,y)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}left|frac{(x^2-y)y^2}{x^4+y^2},right|frac{1}{left|left|(x,y)right|right|} \
end{eqnarray}
If we use the path $y=x$:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{(x^2-x)x^2}{x^4+x^2},right|frac{1}{left|left|(x,x)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{x^2-x}{x^2+1},right|frac{1}{|x|left|left|(1,1)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} lim_{xto 0}left|frac{x-1}{x^2+1},right| \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} neq 0 \
end{eqnarray}
Thus $f$ is not differentiable in $(0,0)$
$endgroup$
I am going to introduce the definition of differentiability of a function. A function $f : mathbb{R}^n to mathbb{R}^m$ is differenctiable in $x_0in mathbb{R}^n$ if there exists a linear function $L:mathbb{R}^ntomathbb{R}^m$ such that:
$$
lim_{hto (0,0)}frac{left|left|,f(x_0+h)-f(x_0)-L(h)right|right|}{left|left|hright|right|}=0
$$
The matrix associated to the linear function $L$ is the Jacobian matrix.
Then, let's calculate the Jacobian matrix of:
$$
f(x,y)=begin{cases}
displaystylefrac{(x^2-y)y^2}{x^4+y^2} & text{if } (x,y)neq (0,0) \
0 & text{if } (x,y)=(0,0)
end{cases}
$$
in $(x,y)=(0,0)$. First:
$$
frac{partial f}{partial x}(0,0) = lim_{hto 0} frac{0}{h^4}=0
$$
$$
frac{partial f}{partial y}(0,0) = lim_{hto 0} frac{-h^3}{h^2}=0
$$
Then the Jacobian matrix in $(0,0)$ of $f$ is $J_{(0,0)}(,f)=left(begin{array}{cc}
0 & 0
end{array}right)$, the if $L$ exists, it is $L(x,y)=left(begin{array}{cc}
0 & 0
end{array}right)left(begin{array}{c}
x \
y \
end{array}right)=0$. Then:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)right|right|}{left|left|(x,y)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{(x,y)to (0,0)}left|frac{(x^2-y)y^2}{x^4+y^2},right|frac{1}{left|left|(x,y)right|right|} \
end{eqnarray}
If we use the path $y=x$:
begin{eqnarray}
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{(x^2-x)x^2}{x^4+x^2},right|frac{1}{left|left|(x,x)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& lim_{xto 0}left|frac{x^2-x}{x^2+1},right|frac{1}{|x|left|left|(1,1)right|right|} \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} lim_{xto 0}left|frac{x-1}{x^2+1},right| \
lim_{(x,y)to (0,0)}frac{left|left|,f(x,y)-f(0,0)-L(x,y)right|right|}{left|left|(x,y)right|right|} &=& frac{1}{left|left|(1,1)right|right|} neq 0 \
end{eqnarray}
Thus $f$ is not differentiable in $(0,0)$
edited Jan 17 at 20:31
answered Jan 17 at 1:02


El boritoEl borito
666216
666216
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
add a comment |
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
$begingroup$
It is fixed, thank you so much
$endgroup$
– El borito
Jan 17 at 4:35
1
1
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
$begingroup$
thank you. it really helped.
$endgroup$
– S.Jafari
Jan 17 at 19:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076452%2fdifferentiability-of-x2-yy2-x4y2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What would be a strategy for proving the existence or nonexistence of a derivative? Did you compute partial derivatives and examine the behavior in a neighborhood of $(0,0)$? Why not show what you actually did compute. Otherwise this just looks like you want someone to solve the problem for you.
$endgroup$
– RRL
Jan 17 at 0:19