Find any local max or min of $x^2+y^2+z^2$ s.t $x+y+z=1$ and $3x+y+z=5$












3












$begingroup$



Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}

such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}




My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$



$L_x=2x+ 3 lambda_1 + lambda_2 =0$



$L_y=2y+ lambda_1 + lambda_2=0$



$L_z=2z+lambda_1 + lambda_2=0$



Solve for $x,y,z$ we get:



$x=frac{-3 lambda_1 - lambda_2}{2}$



$z=y=frac{-lambda_1 - lambda_2}{2}$



with the use of $(2)$ and $(3)$ $implies$



$x=2$



$y=z= frac{-1}{2}$



so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$



The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus



$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I do not see any errors. I would say that is correct.
    $endgroup$
    – idriskameni
    Jan 17 at 13:08










  • $begingroup$
    It is fine for me.
    $endgroup$
    – Alex Silva
    Jan 17 at 13:10
















3












$begingroup$



Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}

such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}




My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$



$L_x=2x+ 3 lambda_1 + lambda_2 =0$



$L_y=2y+ lambda_1 + lambda_2=0$



$L_z=2z+lambda_1 + lambda_2=0$



Solve for $x,y,z$ we get:



$x=frac{-3 lambda_1 - lambda_2}{2}$



$z=y=frac{-lambda_1 - lambda_2}{2}$



with the use of $(2)$ and $(3)$ $implies$



$x=2$



$y=z= frac{-1}{2}$



so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$



The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus



$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I do not see any errors. I would say that is correct.
    $endgroup$
    – idriskameni
    Jan 17 at 13:08










  • $begingroup$
    It is fine for me.
    $endgroup$
    – Alex Silva
    Jan 17 at 13:10














3












3








3





$begingroup$



Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}

such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}




My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$



$L_x=2x+ 3 lambda_1 + lambda_2 =0$



$L_y=2y+ lambda_1 + lambda_2=0$



$L_z=2z+lambda_1 + lambda_2=0$



Solve for $x,y,z$ we get:



$x=frac{-3 lambda_1 - lambda_2}{2}$



$z=y=frac{-lambda_1 - lambda_2}{2}$



with the use of $(2)$ and $(3)$ $implies$



$x=2$



$y=z= frac{-1}{2}$



so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$



The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus



$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.



Is this correct?










share|cite|improve this question











$endgroup$





Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}

such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}




My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$



$L_x=2x+ 3 lambda_1 + lambda_2 =0$



$L_y=2y+ lambda_1 + lambda_2=0$



$L_z=2z+lambda_1 + lambda_2=0$



Solve for $x,y,z$ we get:



$x=frac{-3 lambda_1 - lambda_2}{2}$



$z=y=frac{-lambda_1 - lambda_2}{2}$



with the use of $(2)$ and $(3)$ $implies$



$x=2$



$y=z= frac{-1}{2}$



so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$



The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus



$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.



Is this correct?







calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 17 at 13:29









Robert Z

98.6k1068139




98.6k1068139










asked Jan 17 at 13:00









Dreamer123Dreamer123

32729




32729












  • $begingroup$
    I do not see any errors. I would say that is correct.
    $endgroup$
    – idriskameni
    Jan 17 at 13:08










  • $begingroup$
    It is fine for me.
    $endgroup$
    – Alex Silva
    Jan 17 at 13:10


















  • $begingroup$
    I do not see any errors. I would say that is correct.
    $endgroup$
    – idriskameni
    Jan 17 at 13:08










  • $begingroup$
    It is fine for me.
    $endgroup$
    – Alex Silva
    Jan 17 at 13:10
















$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08




$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08












$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10




$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10










2 Answers
2






active

oldest

votes


















1












$begingroup$

Your result is correct. This is an alternative approach.



Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Great answer. Thank you!
    $endgroup$
    – Dreamer123
    Jan 17 at 13:33



















1












$begingroup$

An option:



1) $x+y+z=1$; and



2) $3x+y+z=5$;



$2$ planes , their intersection is a straight line.



Subtract: 2)-1):



$2x=4$; $x=2$ ;and



$y+z=-1$;



$d^2=x^2+y^2+z^2$ .



Minimal distance of line from origin:



$d^2= 4 +y^2+z^2.$



2D problem:



Minimize $y^2+z^2$ with constraint $y+z=-1$.



$d_2^2= $



$[-(1+z)]^2+z^2=2z^2+2z+1=$



$2(z^2+z)+1= $



$2[(z+1/2)^2]-1/2+1ge 1/2$.



Equality at $z=-1/2$;



Finally:



Minimum at :



$x=2$ ; $y=-1/2$; $z=-1/2$;



$d^2_{min}= 4+1/2=9/2;$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You mean $x=2$?
    $endgroup$
    – Alex Silva
    Jan 17 at 13:48










  • $begingroup$
    Alex.Thanks, this was fast:)
    $endgroup$
    – Peter Szilas
    Jan 17 at 13:50











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076938%2ffind-any-local-max-or-min-of-x2y2z2-s-t-xyz-1-and-3xyz-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Your result is correct. This is an alternative approach.



Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Great answer. Thank you!
    $endgroup$
    – Dreamer123
    Jan 17 at 13:33
















1












$begingroup$

Your result is correct. This is an alternative approach.



Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Great answer. Thank you!
    $endgroup$
    – Dreamer123
    Jan 17 at 13:33














1












1








1





$begingroup$

Your result is correct. This is an alternative approach.



Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.






share|cite|improve this answer











$endgroup$



Your result is correct. This is an alternative approach.



Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 13:28

























answered Jan 17 at 13:11









Robert ZRobert Z

98.6k1068139




98.6k1068139












  • $begingroup$
    Great answer. Thank you!
    $endgroup$
    – Dreamer123
    Jan 17 at 13:33


















  • $begingroup$
    Great answer. Thank you!
    $endgroup$
    – Dreamer123
    Jan 17 at 13:33
















$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33




$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33











1












$begingroup$

An option:



1) $x+y+z=1$; and



2) $3x+y+z=5$;



$2$ planes , their intersection is a straight line.



Subtract: 2)-1):



$2x=4$; $x=2$ ;and



$y+z=-1$;



$d^2=x^2+y^2+z^2$ .



Minimal distance of line from origin:



$d^2= 4 +y^2+z^2.$



2D problem:



Minimize $y^2+z^2$ with constraint $y+z=-1$.



$d_2^2= $



$[-(1+z)]^2+z^2=2z^2+2z+1=$



$2(z^2+z)+1= $



$2[(z+1/2)^2]-1/2+1ge 1/2$.



Equality at $z=-1/2$;



Finally:



Minimum at :



$x=2$ ; $y=-1/2$; $z=-1/2$;



$d^2_{min}= 4+1/2=9/2;$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You mean $x=2$?
    $endgroup$
    – Alex Silva
    Jan 17 at 13:48










  • $begingroup$
    Alex.Thanks, this was fast:)
    $endgroup$
    – Peter Szilas
    Jan 17 at 13:50
















1












$begingroup$

An option:



1) $x+y+z=1$; and



2) $3x+y+z=5$;



$2$ planes , their intersection is a straight line.



Subtract: 2)-1):



$2x=4$; $x=2$ ;and



$y+z=-1$;



$d^2=x^2+y^2+z^2$ .



Minimal distance of line from origin:



$d^2= 4 +y^2+z^2.$



2D problem:



Minimize $y^2+z^2$ with constraint $y+z=-1$.



$d_2^2= $



$[-(1+z)]^2+z^2=2z^2+2z+1=$



$2(z^2+z)+1= $



$2[(z+1/2)^2]-1/2+1ge 1/2$.



Equality at $z=-1/2$;



Finally:



Minimum at :



$x=2$ ; $y=-1/2$; $z=-1/2$;



$d^2_{min}= 4+1/2=9/2;$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You mean $x=2$?
    $endgroup$
    – Alex Silva
    Jan 17 at 13:48










  • $begingroup$
    Alex.Thanks, this was fast:)
    $endgroup$
    – Peter Szilas
    Jan 17 at 13:50














1












1








1





$begingroup$

An option:



1) $x+y+z=1$; and



2) $3x+y+z=5$;



$2$ planes , their intersection is a straight line.



Subtract: 2)-1):



$2x=4$; $x=2$ ;and



$y+z=-1$;



$d^2=x^2+y^2+z^2$ .



Minimal distance of line from origin:



$d^2= 4 +y^2+z^2.$



2D problem:



Minimize $y^2+z^2$ with constraint $y+z=-1$.



$d_2^2= $



$[-(1+z)]^2+z^2=2z^2+2z+1=$



$2(z^2+z)+1= $



$2[(z+1/2)^2]-1/2+1ge 1/2$.



Equality at $z=-1/2$;



Finally:



Minimum at :



$x=2$ ; $y=-1/2$; $z=-1/2$;



$d^2_{min}= 4+1/2=9/2;$






share|cite|improve this answer











$endgroup$



An option:



1) $x+y+z=1$; and



2) $3x+y+z=5$;



$2$ planes , their intersection is a straight line.



Subtract: 2)-1):



$2x=4$; $x=2$ ;and



$y+z=-1$;



$d^2=x^2+y^2+z^2$ .



Minimal distance of line from origin:



$d^2= 4 +y^2+z^2.$



2D problem:



Minimize $y^2+z^2$ with constraint $y+z=-1$.



$d_2^2= $



$[-(1+z)]^2+z^2=2z^2+2z+1=$



$2(z^2+z)+1= $



$2[(z+1/2)^2]-1/2+1ge 1/2$.



Equality at $z=-1/2$;



Finally:



Minimum at :



$x=2$ ; $y=-1/2$; $z=-1/2$;



$d^2_{min}= 4+1/2=9/2;$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 13:49

























answered Jan 17 at 13:45









Peter SzilasPeter Szilas

11.4k2822




11.4k2822












  • $begingroup$
    You mean $x=2$?
    $endgroup$
    – Alex Silva
    Jan 17 at 13:48










  • $begingroup$
    Alex.Thanks, this was fast:)
    $endgroup$
    – Peter Szilas
    Jan 17 at 13:50


















  • $begingroup$
    You mean $x=2$?
    $endgroup$
    – Alex Silva
    Jan 17 at 13:48










  • $begingroup$
    Alex.Thanks, this was fast:)
    $endgroup$
    – Peter Szilas
    Jan 17 at 13:50
















$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48




$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48












$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50




$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076938%2ffind-any-local-max-or-min-of-x2y2z2-s-t-xyz-1-and-3xyz-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith