Find any local max or min of $x^2+y^2+z^2$ s.t $x+y+z=1$ and $3x+y+z=5$
$begingroup$
Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}
such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}
My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$
$L_x=2x+ 3 lambda_1 + lambda_2 =0$
$L_y=2y+ lambda_1 + lambda_2=0$
$L_z=2z+lambda_1 + lambda_2=0$
Solve for $x,y,z$ we get:
$x=frac{-3 lambda_1 - lambda_2}{2}$
$z=y=frac{-lambda_1 - lambda_2}{2}$
with the use of $(2)$ and $(3)$ $implies$
$x=2$
$y=z= frac{-1}{2}$
so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$
The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus
$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.
Is this correct?
calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier
$endgroup$
add a comment |
$begingroup$
Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}
such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}
My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$
$L_x=2x+ 3 lambda_1 + lambda_2 =0$
$L_y=2y+ lambda_1 + lambda_2=0$
$L_z=2z+lambda_1 + lambda_2=0$
Solve for $x,y,z$ we get:
$x=frac{-3 lambda_1 - lambda_2}{2}$
$z=y=frac{-lambda_1 - lambda_2}{2}$
with the use of $(2)$ and $(3)$ $implies$
$x=2$
$y=z= frac{-1}{2}$
so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$
The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus
$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.
Is this correct?
calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier
$endgroup$
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10
add a comment |
$begingroup$
Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}
such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}
My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$
$L_x=2x+ 3 lambda_1 + lambda_2 =0$
$L_y=2y+ lambda_1 + lambda_2=0$
$L_z=2z+lambda_1 + lambda_2=0$
Solve for $x,y,z$ we get:
$x=frac{-3 lambda_1 - lambda_2}{2}$
$z=y=frac{-lambda_1 - lambda_2}{2}$
with the use of $(2)$ and $(3)$ $implies$
$x=2$
$y=z= frac{-1}{2}$
so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$
The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus
$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.
Is this correct?
calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier
$endgroup$
Find any local max or min of
begin{align}
f(x,y,z)=x^2+y^2+z^2 && (1)
end{align}
such that
begin{align}
x+y+z=1 && (2)\
3x+y+z=5 && (3)
end{align}
My attempt. Let
$L(x,y,z,lambda_1, lambda_2)= f(x,y,z)+lambda_2 (x+y+z-1) + lambda_1 (3x+y+z-5)$
$L_x=2x+ 3 lambda_1 + lambda_2 =0$
$L_y=2y+ lambda_1 + lambda_2=0$
$L_z=2z+lambda_1 + lambda_2=0$
Solve for $x,y,z$ we get:
$x=frac{-3 lambda_1 - lambda_2}{2}$
$z=y=frac{-lambda_1 - lambda_2}{2}$
with the use of $(2)$ and $(3)$ $implies$
$x=2$
$y=z= frac{-1}{2}$
so the stationary point is $(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$
The Hessian of $L$ gives a postive definite matrix for all $(x,y,z)$ thus
$(x,y,z)=(2, frac{-1}{2},frac{-1}{2})$ is the only local minimizer of $f$ and there is no maximizors of $f$.
Is this correct?
calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier
calculus multivariable-calculus optimization nonlinear-optimization lagrange-multiplier
edited Jan 17 at 13:29


Robert Z
98.6k1068139
98.6k1068139
asked Jan 17 at 13:00


Dreamer123Dreamer123
32729
32729
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10
add a comment |
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Your result is correct. This is an alternative approach.
Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.
$endgroup$
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
add a comment |
$begingroup$
An option:
1) $x+y+z=1$; and
2) $3x+y+z=5$;
$2$ planes , their intersection is a straight line.
Subtract: 2)-1):
$2x=4$; $x=2$ ;and
$y+z=-1$;
$d^2=x^2+y^2+z^2$ .
Minimal distance of line from origin:
$d^2= 4 +y^2+z^2.$
2D problem:
Minimize $y^2+z^2$ with constraint $y+z=-1$.
$d_2^2= $
$[-(1+z)]^2+z^2=2z^2+2z+1=$
$2(z^2+z)+1= $
$2[(z+1/2)^2]-1/2+1ge 1/2$.
Equality at $z=-1/2$;
Finally:
Minimum at :
$x=2$ ; $y=-1/2$; $z=-1/2$;
$d^2_{min}= 4+1/2=9/2;$
$endgroup$
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076938%2ffind-any-local-max-or-min-of-x2y2z2-s-t-xyz-1-and-3xyz-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your result is correct. This is an alternative approach.
Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.
$endgroup$
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
add a comment |
$begingroup$
Your result is correct. This is an alternative approach.
Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.
$endgroup$
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
add a comment |
$begingroup$
Your result is correct. This is an alternative approach.
Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.
$endgroup$
Your result is correct. This is an alternative approach.
Here we have two non-parallel planes which intersect along the line $(x,y,z)=(2,t,-1-t)$ where $tin mathbb{R}$.
Hence we reduce the problem to a $1$-variable case,
$$f(x,y,z)=4+t^2+(-1-t)^2=2t^2+2t+5$$
The above quadratic polynomial has just one local/global minimum at $t=-1/2$ that is at $(2,-1/2,-1/2)$. There is no local/global maximum.
edited Jan 17 at 13:28
answered Jan 17 at 13:11


Robert ZRobert Z
98.6k1068139
98.6k1068139
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
add a comment |
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
$begingroup$
Great answer. Thank you!
$endgroup$
– Dreamer123
Jan 17 at 13:33
add a comment |
$begingroup$
An option:
1) $x+y+z=1$; and
2) $3x+y+z=5$;
$2$ planes , their intersection is a straight line.
Subtract: 2)-1):
$2x=4$; $x=2$ ;and
$y+z=-1$;
$d^2=x^2+y^2+z^2$ .
Minimal distance of line from origin:
$d^2= 4 +y^2+z^2.$
2D problem:
Minimize $y^2+z^2$ with constraint $y+z=-1$.
$d_2^2= $
$[-(1+z)]^2+z^2=2z^2+2z+1=$
$2(z^2+z)+1= $
$2[(z+1/2)^2]-1/2+1ge 1/2$.
Equality at $z=-1/2$;
Finally:
Minimum at :
$x=2$ ; $y=-1/2$; $z=-1/2$;
$d^2_{min}= 4+1/2=9/2;$
$endgroup$
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
add a comment |
$begingroup$
An option:
1) $x+y+z=1$; and
2) $3x+y+z=5$;
$2$ planes , their intersection is a straight line.
Subtract: 2)-1):
$2x=4$; $x=2$ ;and
$y+z=-1$;
$d^2=x^2+y^2+z^2$ .
Minimal distance of line from origin:
$d^2= 4 +y^2+z^2.$
2D problem:
Minimize $y^2+z^2$ with constraint $y+z=-1$.
$d_2^2= $
$[-(1+z)]^2+z^2=2z^2+2z+1=$
$2(z^2+z)+1= $
$2[(z+1/2)^2]-1/2+1ge 1/2$.
Equality at $z=-1/2$;
Finally:
Minimum at :
$x=2$ ; $y=-1/2$; $z=-1/2$;
$d^2_{min}= 4+1/2=9/2;$
$endgroup$
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
add a comment |
$begingroup$
An option:
1) $x+y+z=1$; and
2) $3x+y+z=5$;
$2$ planes , their intersection is a straight line.
Subtract: 2)-1):
$2x=4$; $x=2$ ;and
$y+z=-1$;
$d^2=x^2+y^2+z^2$ .
Minimal distance of line from origin:
$d^2= 4 +y^2+z^2.$
2D problem:
Minimize $y^2+z^2$ with constraint $y+z=-1$.
$d_2^2= $
$[-(1+z)]^2+z^2=2z^2+2z+1=$
$2(z^2+z)+1= $
$2[(z+1/2)^2]-1/2+1ge 1/2$.
Equality at $z=-1/2$;
Finally:
Minimum at :
$x=2$ ; $y=-1/2$; $z=-1/2$;
$d^2_{min}= 4+1/2=9/2;$
$endgroup$
An option:
1) $x+y+z=1$; and
2) $3x+y+z=5$;
$2$ planes , their intersection is a straight line.
Subtract: 2)-1):
$2x=4$; $x=2$ ;and
$y+z=-1$;
$d^2=x^2+y^2+z^2$ .
Minimal distance of line from origin:
$d^2= 4 +y^2+z^2.$
2D problem:
Minimize $y^2+z^2$ with constraint $y+z=-1$.
$d_2^2= $
$[-(1+z)]^2+z^2=2z^2+2z+1=$
$2(z^2+z)+1= $
$2[(z+1/2)^2]-1/2+1ge 1/2$.
Equality at $z=-1/2$;
Finally:
Minimum at :
$x=2$ ; $y=-1/2$; $z=-1/2$;
$d^2_{min}= 4+1/2=9/2;$
edited Jan 17 at 13:49
answered Jan 17 at 13:45
Peter SzilasPeter Szilas
11.4k2822
11.4k2822
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
add a comment |
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
You mean $x=2$?
$endgroup$
– Alex Silva
Jan 17 at 13:48
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
$begingroup$
Alex.Thanks, this was fast:)
$endgroup$
– Peter Szilas
Jan 17 at 13:50
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076938%2ffind-any-local-max-or-min-of-x2y2z2-s-t-xyz-1-and-3xyz-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I do not see any errors. I would say that is correct.
$endgroup$
– idriskameni
Jan 17 at 13:08
$begingroup$
It is fine for me.
$endgroup$
– Alex Silva
Jan 17 at 13:10