How to apply CRT to this congruence system?












1












$begingroup$


$x=1 pmod 8$



$x=5 pmod{12}$



8 and 12 are not coprime, I could break it to:



$x=1 pmod 2$



$x=1 pmod 4$



and



$x=5 pmod 3$



$x=5 pmod 4$



But what are the next steps to solve it? By the way, $x$ should be $17$ not sure how to get that number ...



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean CRT (the Chinese Remainder Theorem)?
    $endgroup$
    – Théophile
    Jan 16 at 14:50










  • $begingroup$
    @Théophile Yes indeed, I edited the title of the question.
    $endgroup$
    – Igor
    Jan 16 at 14:52






  • 1




    $begingroup$
    $12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
    $endgroup$
    – reuns
    Jan 16 at 14:57












  • $begingroup$
    Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
    $endgroup$
    – lulu
    Jan 16 at 15:11










  • $begingroup$
    Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
    $endgroup$
    – fleablood
    Jan 16 at 16:24
















1












$begingroup$


$x=1 pmod 8$



$x=5 pmod{12}$



8 and 12 are not coprime, I could break it to:



$x=1 pmod 2$



$x=1 pmod 4$



and



$x=5 pmod 3$



$x=5 pmod 4$



But what are the next steps to solve it? By the way, $x$ should be $17$ not sure how to get that number ...



Thanks in advance.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Do you mean CRT (the Chinese Remainder Theorem)?
    $endgroup$
    – Théophile
    Jan 16 at 14:50










  • $begingroup$
    @Théophile Yes indeed, I edited the title of the question.
    $endgroup$
    – Igor
    Jan 16 at 14:52






  • 1




    $begingroup$
    $12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
    $endgroup$
    – reuns
    Jan 16 at 14:57












  • $begingroup$
    Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
    $endgroup$
    – lulu
    Jan 16 at 15:11










  • $begingroup$
    Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
    $endgroup$
    – fleablood
    Jan 16 at 16:24














1












1








1





$begingroup$


$x=1 pmod 8$



$x=5 pmod{12}$



8 and 12 are not coprime, I could break it to:



$x=1 pmod 2$



$x=1 pmod 4$



and



$x=5 pmod 3$



$x=5 pmod 4$



But what are the next steps to solve it? By the way, $x$ should be $17$ not sure how to get that number ...



Thanks in advance.










share|cite|improve this question











$endgroup$




$x=1 pmod 8$



$x=5 pmod{12}$



8 and 12 are not coprime, I could break it to:



$x=1 pmod 2$



$x=1 pmod 4$



and



$x=5 pmod 3$



$x=5 pmod 4$



But what are the next steps to solve it? By the way, $x$ should be $17$ not sure how to get that number ...



Thanks in advance.







number-theory prime-numbers modular-arithmetic






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 15:58









Bernard

121k740116




121k740116










asked Jan 16 at 14:50









Igor Igor

63




63












  • $begingroup$
    Do you mean CRT (the Chinese Remainder Theorem)?
    $endgroup$
    – Théophile
    Jan 16 at 14:50










  • $begingroup$
    @Théophile Yes indeed, I edited the title of the question.
    $endgroup$
    – Igor
    Jan 16 at 14:52






  • 1




    $begingroup$
    $12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
    $endgroup$
    – reuns
    Jan 16 at 14:57












  • $begingroup$
    Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
    $endgroup$
    – lulu
    Jan 16 at 15:11










  • $begingroup$
    Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
    $endgroup$
    – fleablood
    Jan 16 at 16:24


















  • $begingroup$
    Do you mean CRT (the Chinese Remainder Theorem)?
    $endgroup$
    – Théophile
    Jan 16 at 14:50










  • $begingroup$
    @Théophile Yes indeed, I edited the title of the question.
    $endgroup$
    – Igor
    Jan 16 at 14:52






  • 1




    $begingroup$
    $12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
    $endgroup$
    – reuns
    Jan 16 at 14:57












  • $begingroup$
    Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
    $endgroup$
    – lulu
    Jan 16 at 15:11










  • $begingroup$
    Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
    $endgroup$
    – fleablood
    Jan 16 at 16:24
















$begingroup$
Do you mean CRT (the Chinese Remainder Theorem)?
$endgroup$
– Théophile
Jan 16 at 14:50




$begingroup$
Do you mean CRT (the Chinese Remainder Theorem)?
$endgroup$
– Théophile
Jan 16 at 14:50












$begingroup$
@Théophile Yes indeed, I edited the title of the question.
$endgroup$
– Igor
Jan 16 at 14:52




$begingroup$
@Théophile Yes indeed, I edited the title of the question.
$endgroup$
– Igor
Jan 16 at 14:52




1




1




$begingroup$
$12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
$endgroup$
– reuns
Jan 16 at 14:57






$begingroup$
$12 = nm, n=3,m=4,gcd(n,m)=1$ so $x equiv 5 bmod nm$ iff $x equiv 5 bmod n,x equiv 5 bmod m$. In the opposite direction when you have $x equiv a bmod n,x equiv b bmod m$ the goal is to find $c = un+vm$ such that it becomes $x equiv c bmod nm$
$endgroup$
– reuns
Jan 16 at 14:57














$begingroup$
Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
$endgroup$
– lulu
Jan 16 at 15:11




$begingroup$
Rewrite your system as $xequiv 1pmod 8$ and $xequiv 2pmod 3$.
$endgroup$
– lulu
Jan 16 at 15:11












$begingroup$
Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
$endgroup$
– fleablood
Jan 16 at 16:24




$begingroup$
Um.... you haven't actually stated what the question is you are trying to answer? I assume it is what is the smallest such value of $x$ or what is $x pmod {24}$. But you haven't said it.
$endgroup$
– fleablood
Jan 16 at 16:24










5 Answers
5






active

oldest

votes


















0












$begingroup$

No point in figuring it out to any lesser power of $2$ than $2^3$.



Leave it at $xequiv 1 pmod 8$ but $x equiv 5 pmod {12}$ can be reduced to $xequiv 5 equiv 2 pmod 3$.



So CRT says there is a unique solution $pmod {28}$; $x equiv 17 pmod{24}$.



$x = A pmod {n_1}$ $(A = 1; n_1 = 8)$



$x = B pmod {n_2}$ $(B = 2; n_2 = 3)$



$m_1n_1 + m_2n_2 = 1$ (in this case $8m_1 + 3m_2 = 1$ so $m_1 =2; B=-5$ or $A=-1; B=3$ or .....)



Then $x = Am_2n_2 + Bn_1n_1pmod {n_1n_2}$.



$x = 1*(-5)*3 + 2*2*8= -15+32 = 17$.



There's utterly no point in reducing to $x equiv 5 pmod 4$ and $x equiv 5pmod 3$ as that will just get you back to $xequiv 2,5,8,11 pmod {12}$ and $x equiv 1,5 pmod 8$ which is worse than what you started with.






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    Alternatively:
    $$begin{cases}xequiv 1pmod{8}\ xequiv 5pmod{12}end{cases} Rightarrow begin{cases} x=8n+1\x=12m+5end{cases} Rightarrow 8n+1=12m+5 Rightarrow \
    2n-3m=1 Rightarrow begin{cases}n=2+3k\m=1+2kend{cases} Rightarrow begin{cases} x=8(2+3k)\ x=12(1+2k)+5end{cases} Rightarrow \
    x=24k+17 Rightarrow xequiv 17pmod{24}.$$






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      Here is a way:
      $$begin{cases}
      xequiv 1pmod 8\xequiv 5pmod{12}
      end{cases}iff begin{cases}
      x -1equiv 0pmod 8\x -1equiv 4pmod{12}end{cases}iff
      begin{cases}
      frac{x -1}4equiv 0pmod 2\frac{x -1}4equiv 1pmod{3}
      end{cases}$$



      Now set $y=frac{x-1}4$. As $3-2=1$, the solutions of the last system of congruences is
      $$ yequiv 0cdot 3- 1cdot 2 =-2pmod{6},$$
      so that, multiplying by $4$,
      $$x-1equiv -8 iff xequiv -7iff xequiv 17pmod{24}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
        $endgroup$
        – Bill Dubuque
        Jan 16 at 23:17



















      0












      $begingroup$

      The moduli gcd is $,d = (8,12) = 4,$ and $,4mid 5-1,$ so by CRT a solution uniquely exists mod ${rm lcm}(8,12) $ $ = 8(12)/4 = 24,,$ computable by $, abbmod ac = a(bbmod c) = $ $!bmod!$ Distributive Law.



      $8mid x!-!1Rightarrow x!-!1bmod 24 = 8left[dfrac{color{#c00}x!-!1}8!bmod 3right] = 8left[dfrac{color{#c00}5!-!1}{2 }!bmod 3right]= 16, $ by $ begin{align}x&equiv 5 !!!pmod{!12}\ Rightarrow,color{#c00}x&equiv color{#c00}5!!!pmod{!3}end{align}$





      Remark $ $ This works generally for $,xequiv apmod{!m}, xequiv bpmod{!n},$ when $,(m,n)=color{#0a0}{dmid b!-!a}$



      $mmid x!-!a,Rightarrow,x!-!abmod mn/d = mleft[dfrac{x-a}mbmod n/dright] = mleft[dfrac{b-a}mbmod n/dright] $



      Note $,dmid b!-!a,Rightarrow, dfrac{b-a}m = dfrac{color{#0a0}{(b-a)/d}}{m/d}$ and $,m/d,$ is invertible $!bmod n/d,$ by $,(m/d,n/d)= 1,,$ thus the fraction exists $bmod n/d$.






      share|cite|improve this answer











      $endgroup$





















        0












        $begingroup$

        By CRT $,xequiv 5pmod{!12}!iff! xequiv 5pmod{!3},$ and $,color{#c00}{xequiv 5pmod{4}}$



        But $,xequiv 1pmod{!8},Rightarrow,xequiv 1equiv 5pmod{!4},,$ hence $,color{#c00}{xequiv 5pmod{4}},$ is redundant, thus



        $$begin{align} x&equiv 1!!pmod{8}\ x&equiv 5!!pmod{12}end{align}iff begin{array}{} xequiv 1 pmod{8}\ xequiv 5 pmod{3}end{array}qquad$$



        so we have reduced it to a an equivalent system where the moduli are coprime. See my other answer for a convenient operational CRT method to solve (both!) of those congruence systems.






        share|cite|improve this answer









        $endgroup$













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075823%2fhow-to-apply-crt-to-this-congruence-system%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          No point in figuring it out to any lesser power of $2$ than $2^3$.



          Leave it at $xequiv 1 pmod 8$ but $x equiv 5 pmod {12}$ can be reduced to $xequiv 5 equiv 2 pmod 3$.



          So CRT says there is a unique solution $pmod {28}$; $x equiv 17 pmod{24}$.



          $x = A pmod {n_1}$ $(A = 1; n_1 = 8)$



          $x = B pmod {n_2}$ $(B = 2; n_2 = 3)$



          $m_1n_1 + m_2n_2 = 1$ (in this case $8m_1 + 3m_2 = 1$ so $m_1 =2; B=-5$ or $A=-1; B=3$ or .....)



          Then $x = Am_2n_2 + Bn_1n_1pmod {n_1n_2}$.



          $x = 1*(-5)*3 + 2*2*8= -15+32 = 17$.



          There's utterly no point in reducing to $x equiv 5 pmod 4$ and $x equiv 5pmod 3$ as that will just get you back to $xequiv 2,5,8,11 pmod {12}$ and $x equiv 1,5 pmod 8$ which is worse than what you started with.






          share|cite|improve this answer











          $endgroup$


















            0












            $begingroup$

            No point in figuring it out to any lesser power of $2$ than $2^3$.



            Leave it at $xequiv 1 pmod 8$ but $x equiv 5 pmod {12}$ can be reduced to $xequiv 5 equiv 2 pmod 3$.



            So CRT says there is a unique solution $pmod {28}$; $x equiv 17 pmod{24}$.



            $x = A pmod {n_1}$ $(A = 1; n_1 = 8)$



            $x = B pmod {n_2}$ $(B = 2; n_2 = 3)$



            $m_1n_1 + m_2n_2 = 1$ (in this case $8m_1 + 3m_2 = 1$ so $m_1 =2; B=-5$ or $A=-1; B=3$ or .....)



            Then $x = Am_2n_2 + Bn_1n_1pmod {n_1n_2}$.



            $x = 1*(-5)*3 + 2*2*8= -15+32 = 17$.



            There's utterly no point in reducing to $x equiv 5 pmod 4$ and $x equiv 5pmod 3$ as that will just get you back to $xequiv 2,5,8,11 pmod {12}$ and $x equiv 1,5 pmod 8$ which is worse than what you started with.






            share|cite|improve this answer











            $endgroup$
















              0












              0








              0





              $begingroup$

              No point in figuring it out to any lesser power of $2$ than $2^3$.



              Leave it at $xequiv 1 pmod 8$ but $x equiv 5 pmod {12}$ can be reduced to $xequiv 5 equiv 2 pmod 3$.



              So CRT says there is a unique solution $pmod {28}$; $x equiv 17 pmod{24}$.



              $x = A pmod {n_1}$ $(A = 1; n_1 = 8)$



              $x = B pmod {n_2}$ $(B = 2; n_2 = 3)$



              $m_1n_1 + m_2n_2 = 1$ (in this case $8m_1 + 3m_2 = 1$ so $m_1 =2; B=-5$ or $A=-1; B=3$ or .....)



              Then $x = Am_2n_2 + Bn_1n_1pmod {n_1n_2}$.



              $x = 1*(-5)*3 + 2*2*8= -15+32 = 17$.



              There's utterly no point in reducing to $x equiv 5 pmod 4$ and $x equiv 5pmod 3$ as that will just get you back to $xequiv 2,5,8,11 pmod {12}$ and $x equiv 1,5 pmod 8$ which is worse than what you started with.






              share|cite|improve this answer











              $endgroup$



              No point in figuring it out to any lesser power of $2$ than $2^3$.



              Leave it at $xequiv 1 pmod 8$ but $x equiv 5 pmod {12}$ can be reduced to $xequiv 5 equiv 2 pmod 3$.



              So CRT says there is a unique solution $pmod {28}$; $x equiv 17 pmod{24}$.



              $x = A pmod {n_1}$ $(A = 1; n_1 = 8)$



              $x = B pmod {n_2}$ $(B = 2; n_2 = 3)$



              $m_1n_1 + m_2n_2 = 1$ (in this case $8m_1 + 3m_2 = 1$ so $m_1 =2; B=-5$ or $A=-1; B=3$ or .....)



              Then $x = Am_2n_2 + Bn_1n_1pmod {n_1n_2}$.



              $x = 1*(-5)*3 + 2*2*8= -15+32 = 17$.



              There's utterly no point in reducing to $x equiv 5 pmod 4$ and $x equiv 5pmod 3$ as that will just get you back to $xequiv 2,5,8,11 pmod {12}$ and $x equiv 1,5 pmod 8$ which is worse than what you started with.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 16 at 16:45

























              answered Jan 16 at 16:26









              fleabloodfleablood

              71.2k22686




              71.2k22686























                  0












                  $begingroup$

                  Alternatively:
                  $$begin{cases}xequiv 1pmod{8}\ xequiv 5pmod{12}end{cases} Rightarrow begin{cases} x=8n+1\x=12m+5end{cases} Rightarrow 8n+1=12m+5 Rightarrow \
                  2n-3m=1 Rightarrow begin{cases}n=2+3k\m=1+2kend{cases} Rightarrow begin{cases} x=8(2+3k)\ x=12(1+2k)+5end{cases} Rightarrow \
                  x=24k+17 Rightarrow xequiv 17pmod{24}.$$






                  share|cite|improve this answer









                  $endgroup$


















                    0












                    $begingroup$

                    Alternatively:
                    $$begin{cases}xequiv 1pmod{8}\ xequiv 5pmod{12}end{cases} Rightarrow begin{cases} x=8n+1\x=12m+5end{cases} Rightarrow 8n+1=12m+5 Rightarrow \
                    2n-3m=1 Rightarrow begin{cases}n=2+3k\m=1+2kend{cases} Rightarrow begin{cases} x=8(2+3k)\ x=12(1+2k)+5end{cases} Rightarrow \
                    x=24k+17 Rightarrow xequiv 17pmod{24}.$$






                    share|cite|improve this answer









                    $endgroup$
















                      0












                      0








                      0





                      $begingroup$

                      Alternatively:
                      $$begin{cases}xequiv 1pmod{8}\ xequiv 5pmod{12}end{cases} Rightarrow begin{cases} x=8n+1\x=12m+5end{cases} Rightarrow 8n+1=12m+5 Rightarrow \
                      2n-3m=1 Rightarrow begin{cases}n=2+3k\m=1+2kend{cases} Rightarrow begin{cases} x=8(2+3k)\ x=12(1+2k)+5end{cases} Rightarrow \
                      x=24k+17 Rightarrow xequiv 17pmod{24}.$$






                      share|cite|improve this answer









                      $endgroup$



                      Alternatively:
                      $$begin{cases}xequiv 1pmod{8}\ xequiv 5pmod{12}end{cases} Rightarrow begin{cases} x=8n+1\x=12m+5end{cases} Rightarrow 8n+1=12m+5 Rightarrow \
                      2n-3m=1 Rightarrow begin{cases}n=2+3k\m=1+2kend{cases} Rightarrow begin{cases} x=8(2+3k)\ x=12(1+2k)+5end{cases} Rightarrow \
                      x=24k+17 Rightarrow xequiv 17pmod{24}.$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 16 at 18:16









                      farruhotafarruhota

                      20.4k2739




                      20.4k2739























                          0












                          $begingroup$

                          Here is a way:
                          $$begin{cases}
                          xequiv 1pmod 8\xequiv 5pmod{12}
                          end{cases}iff begin{cases}
                          x -1equiv 0pmod 8\x -1equiv 4pmod{12}end{cases}iff
                          begin{cases}
                          frac{x -1}4equiv 0pmod 2\frac{x -1}4equiv 1pmod{3}
                          end{cases}$$



                          Now set $y=frac{x-1}4$. As $3-2=1$, the solutions of the last system of congruences is
                          $$ yequiv 0cdot 3- 1cdot 2 =-2pmod{6},$$
                          so that, multiplying by $4$,
                          $$x-1equiv -8 iff xequiv -7iff xequiv 17pmod{24}$$






                          share|cite|improve this answer











                          $endgroup$













                          • $begingroup$
                            This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                            $endgroup$
                            – Bill Dubuque
                            Jan 16 at 23:17
















                          0












                          $begingroup$

                          Here is a way:
                          $$begin{cases}
                          xequiv 1pmod 8\xequiv 5pmod{12}
                          end{cases}iff begin{cases}
                          x -1equiv 0pmod 8\x -1equiv 4pmod{12}end{cases}iff
                          begin{cases}
                          frac{x -1}4equiv 0pmod 2\frac{x -1}4equiv 1pmod{3}
                          end{cases}$$



                          Now set $y=frac{x-1}4$. As $3-2=1$, the solutions of the last system of congruences is
                          $$ yequiv 0cdot 3- 1cdot 2 =-2pmod{6},$$
                          so that, multiplying by $4$,
                          $$x-1equiv -8 iff xequiv -7iff xequiv 17pmod{24}$$






                          share|cite|improve this answer











                          $endgroup$













                          • $begingroup$
                            This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                            $endgroup$
                            – Bill Dubuque
                            Jan 16 at 23:17














                          0












                          0








                          0





                          $begingroup$

                          Here is a way:
                          $$begin{cases}
                          xequiv 1pmod 8\xequiv 5pmod{12}
                          end{cases}iff begin{cases}
                          x -1equiv 0pmod 8\x -1equiv 4pmod{12}end{cases}iff
                          begin{cases}
                          frac{x -1}4equiv 0pmod 2\frac{x -1}4equiv 1pmod{3}
                          end{cases}$$



                          Now set $y=frac{x-1}4$. As $3-2=1$, the solutions of the last system of congruences is
                          $$ yequiv 0cdot 3- 1cdot 2 =-2pmod{6},$$
                          so that, multiplying by $4$,
                          $$x-1equiv -8 iff xequiv -7iff xequiv 17pmod{24}$$






                          share|cite|improve this answer











                          $endgroup$



                          Here is a way:
                          $$begin{cases}
                          xequiv 1pmod 8\xequiv 5pmod{12}
                          end{cases}iff begin{cases}
                          x -1equiv 0pmod 8\x -1equiv 4pmod{12}end{cases}iff
                          begin{cases}
                          frac{x -1}4equiv 0pmod 2\frac{x -1}4equiv 1pmod{3}
                          end{cases}$$



                          Now set $y=frac{x-1}4$. As $3-2=1$, the solutions of the last system of congruences is
                          $$ yequiv 0cdot 3- 1cdot 2 =-2pmod{6},$$
                          so that, multiplying by $4$,
                          $$x-1equiv -8 iff xequiv -7iff xequiv 17pmod{24}$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 16 at 23:35

























                          answered Jan 16 at 16:10









                          BernardBernard

                          121k740116




                          121k740116












                          • $begingroup$
                            This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                            $endgroup$
                            – Bill Dubuque
                            Jan 16 at 23:17


















                          • $begingroup$
                            This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                            $endgroup$
                            – Bill Dubuque
                            Jan 16 at 23:17
















                          $begingroup$
                          This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                          $endgroup$
                          – Bill Dubuque
                          Jan 16 at 23:17




                          $begingroup$
                          This transformation happens quite naturally if we use the mod Distributive Law - see my answer.
                          $endgroup$
                          – Bill Dubuque
                          Jan 16 at 23:17











                          0












                          $begingroup$

                          The moduli gcd is $,d = (8,12) = 4,$ and $,4mid 5-1,$ so by CRT a solution uniquely exists mod ${rm lcm}(8,12) $ $ = 8(12)/4 = 24,,$ computable by $, abbmod ac = a(bbmod c) = $ $!bmod!$ Distributive Law.



                          $8mid x!-!1Rightarrow x!-!1bmod 24 = 8left[dfrac{color{#c00}x!-!1}8!bmod 3right] = 8left[dfrac{color{#c00}5!-!1}{2 }!bmod 3right]= 16, $ by $ begin{align}x&equiv 5 !!!pmod{!12}\ Rightarrow,color{#c00}x&equiv color{#c00}5!!!pmod{!3}end{align}$





                          Remark $ $ This works generally for $,xequiv apmod{!m}, xequiv bpmod{!n},$ when $,(m,n)=color{#0a0}{dmid b!-!a}$



                          $mmid x!-!a,Rightarrow,x!-!abmod mn/d = mleft[dfrac{x-a}mbmod n/dright] = mleft[dfrac{b-a}mbmod n/dright] $



                          Note $,dmid b!-!a,Rightarrow, dfrac{b-a}m = dfrac{color{#0a0}{(b-a)/d}}{m/d}$ and $,m/d,$ is invertible $!bmod n/d,$ by $,(m/d,n/d)= 1,,$ thus the fraction exists $bmod n/d$.






                          share|cite|improve this answer











                          $endgroup$


















                            0












                            $begingroup$

                            The moduli gcd is $,d = (8,12) = 4,$ and $,4mid 5-1,$ so by CRT a solution uniquely exists mod ${rm lcm}(8,12) $ $ = 8(12)/4 = 24,,$ computable by $, abbmod ac = a(bbmod c) = $ $!bmod!$ Distributive Law.



                            $8mid x!-!1Rightarrow x!-!1bmod 24 = 8left[dfrac{color{#c00}x!-!1}8!bmod 3right] = 8left[dfrac{color{#c00}5!-!1}{2 }!bmod 3right]= 16, $ by $ begin{align}x&equiv 5 !!!pmod{!12}\ Rightarrow,color{#c00}x&equiv color{#c00}5!!!pmod{!3}end{align}$





                            Remark $ $ This works generally for $,xequiv apmod{!m}, xequiv bpmod{!n},$ when $,(m,n)=color{#0a0}{dmid b!-!a}$



                            $mmid x!-!a,Rightarrow,x!-!abmod mn/d = mleft[dfrac{x-a}mbmod n/dright] = mleft[dfrac{b-a}mbmod n/dright] $



                            Note $,dmid b!-!a,Rightarrow, dfrac{b-a}m = dfrac{color{#0a0}{(b-a)/d}}{m/d}$ and $,m/d,$ is invertible $!bmod n/d,$ by $,(m/d,n/d)= 1,,$ thus the fraction exists $bmod n/d$.






                            share|cite|improve this answer











                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              The moduli gcd is $,d = (8,12) = 4,$ and $,4mid 5-1,$ so by CRT a solution uniquely exists mod ${rm lcm}(8,12) $ $ = 8(12)/4 = 24,,$ computable by $, abbmod ac = a(bbmod c) = $ $!bmod!$ Distributive Law.



                              $8mid x!-!1Rightarrow x!-!1bmod 24 = 8left[dfrac{color{#c00}x!-!1}8!bmod 3right] = 8left[dfrac{color{#c00}5!-!1}{2 }!bmod 3right]= 16, $ by $ begin{align}x&equiv 5 !!!pmod{!12}\ Rightarrow,color{#c00}x&equiv color{#c00}5!!!pmod{!3}end{align}$





                              Remark $ $ This works generally for $,xequiv apmod{!m}, xequiv bpmod{!n},$ when $,(m,n)=color{#0a0}{dmid b!-!a}$



                              $mmid x!-!a,Rightarrow,x!-!abmod mn/d = mleft[dfrac{x-a}mbmod n/dright] = mleft[dfrac{b-a}mbmod n/dright] $



                              Note $,dmid b!-!a,Rightarrow, dfrac{b-a}m = dfrac{color{#0a0}{(b-a)/d}}{m/d}$ and $,m/d,$ is invertible $!bmod n/d,$ by $,(m/d,n/d)= 1,,$ thus the fraction exists $bmod n/d$.






                              share|cite|improve this answer











                              $endgroup$



                              The moduli gcd is $,d = (8,12) = 4,$ and $,4mid 5-1,$ so by CRT a solution uniquely exists mod ${rm lcm}(8,12) $ $ = 8(12)/4 = 24,,$ computable by $, abbmod ac = a(bbmod c) = $ $!bmod!$ Distributive Law.



                              $8mid x!-!1Rightarrow x!-!1bmod 24 = 8left[dfrac{color{#c00}x!-!1}8!bmod 3right] = 8left[dfrac{color{#c00}5!-!1}{2 }!bmod 3right]= 16, $ by $ begin{align}x&equiv 5 !!!pmod{!12}\ Rightarrow,color{#c00}x&equiv color{#c00}5!!!pmod{!3}end{align}$





                              Remark $ $ This works generally for $,xequiv apmod{!m}, xequiv bpmod{!n},$ when $,(m,n)=color{#0a0}{dmid b!-!a}$



                              $mmid x!-!a,Rightarrow,x!-!abmod mn/d = mleft[dfrac{x-a}mbmod n/dright] = mleft[dfrac{b-a}mbmod n/dright] $



                              Note $,dmid b!-!a,Rightarrow, dfrac{b-a}m = dfrac{color{#0a0}{(b-a)/d}}{m/d}$ and $,m/d,$ is invertible $!bmod n/d,$ by $,(m/d,n/d)= 1,,$ thus the fraction exists $bmod n/d$.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 16 at 23:36

























                              answered Jan 16 at 23:09









                              Bill DubuqueBill Dubuque

                              211k29193646




                              211k29193646























                                  0












                                  $begingroup$

                                  By CRT $,xequiv 5pmod{!12}!iff! xequiv 5pmod{!3},$ and $,color{#c00}{xequiv 5pmod{4}}$



                                  But $,xequiv 1pmod{!8},Rightarrow,xequiv 1equiv 5pmod{!4},,$ hence $,color{#c00}{xequiv 5pmod{4}},$ is redundant, thus



                                  $$begin{align} x&equiv 1!!pmod{8}\ x&equiv 5!!pmod{12}end{align}iff begin{array}{} xequiv 1 pmod{8}\ xequiv 5 pmod{3}end{array}qquad$$



                                  so we have reduced it to a an equivalent system where the moduli are coprime. See my other answer for a convenient operational CRT method to solve (both!) of those congruence systems.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    By CRT $,xequiv 5pmod{!12}!iff! xequiv 5pmod{!3},$ and $,color{#c00}{xequiv 5pmod{4}}$



                                    But $,xequiv 1pmod{!8},Rightarrow,xequiv 1equiv 5pmod{!4},,$ hence $,color{#c00}{xequiv 5pmod{4}},$ is redundant, thus



                                    $$begin{align} x&equiv 1!!pmod{8}\ x&equiv 5!!pmod{12}end{align}iff begin{array}{} xequiv 1 pmod{8}\ xequiv 5 pmod{3}end{array}qquad$$



                                    so we have reduced it to a an equivalent system where the moduli are coprime. See my other answer for a convenient operational CRT method to solve (both!) of those congruence systems.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      By CRT $,xequiv 5pmod{!12}!iff! xequiv 5pmod{!3},$ and $,color{#c00}{xequiv 5pmod{4}}$



                                      But $,xequiv 1pmod{!8},Rightarrow,xequiv 1equiv 5pmod{!4},,$ hence $,color{#c00}{xequiv 5pmod{4}},$ is redundant, thus



                                      $$begin{align} x&equiv 1!!pmod{8}\ x&equiv 5!!pmod{12}end{align}iff begin{array}{} xequiv 1 pmod{8}\ xequiv 5 pmod{3}end{array}qquad$$



                                      so we have reduced it to a an equivalent system where the moduli are coprime. See my other answer for a convenient operational CRT method to solve (both!) of those congruence systems.






                                      share|cite|improve this answer









                                      $endgroup$



                                      By CRT $,xequiv 5pmod{!12}!iff! xequiv 5pmod{!3},$ and $,color{#c00}{xequiv 5pmod{4}}$



                                      But $,xequiv 1pmod{!8},Rightarrow,xequiv 1equiv 5pmod{!4},,$ hence $,color{#c00}{xequiv 5pmod{4}},$ is redundant, thus



                                      $$begin{align} x&equiv 1!!pmod{8}\ x&equiv 5!!pmod{12}end{align}iff begin{array}{} xequiv 1 pmod{8}\ xequiv 5 pmod{3}end{array}qquad$$



                                      so we have reduced it to a an equivalent system where the moduli are coprime. See my other answer for a convenient operational CRT method to solve (both!) of those congruence systems.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 16 at 23:54









                                      Bill DubuqueBill Dubuque

                                      211k29193646




                                      211k29193646






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075823%2fhow-to-apply-crt-to-this-congruence-system%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          MongoDB - Not Authorized To Execute Command

                                          How to fix TextFormField cause rebuild widget in Flutter

                                          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith