Primitive of a function with $sin frac{1}{x}$












2












$begingroup$


I have the next integral:
$$intbiggl({frac{sin frac{1}{x}}{x^2sqrt{(4+3 sinfrac{2}{x})}}}biggr),dx ,;xin Bigl(0,inftyBigr)$$
I used the substitution $u=frac{1}{x}$ and I got $$-intbiggl({frac{sin u}{sqrt{(4+3 sin2u)}}}biggr),du$$
Can somebody give me some tips about what should I do next, please?










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I have the next integral:
    $$intbiggl({frac{sin frac{1}{x}}{x^2sqrt{(4+3 sinfrac{2}{x})}}}biggr),dx ,;xin Bigl(0,inftyBigr)$$
    I used the substitution $u=frac{1}{x}$ and I got $$-intbiggl({frac{sin u}{sqrt{(4+3 sin2u)}}}biggr),du$$
    Can somebody give me some tips about what should I do next, please?










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      0



      $begingroup$


      I have the next integral:
      $$intbiggl({frac{sin frac{1}{x}}{x^2sqrt{(4+3 sinfrac{2}{x})}}}biggr),dx ,;xin Bigl(0,inftyBigr)$$
      I used the substitution $u=frac{1}{x}$ and I got $$-intbiggl({frac{sin u}{sqrt{(4+3 sin2u)}}}biggr),du$$
      Can somebody give me some tips about what should I do next, please?










      share|cite|improve this question











      $endgroup$




      I have the next integral:
      $$intbiggl({frac{sin frac{1}{x}}{x^2sqrt{(4+3 sinfrac{2}{x})}}}biggr),dx ,;xin Bigl(0,inftyBigr)$$
      I used the substitution $u=frac{1}{x}$ and I got $$-intbiggl({frac{sin u}{sqrt{(4+3 sin2u)}}}biggr),du$$
      Can somebody give me some tips about what should I do next, please?







      real-analysis calculus trigonometry indefinite-integrals substitution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 21:24









      Bernard

      121k740116




      121k740116










      asked Jan 16 at 20:19









      GaboruGaboru

      1047




      1047






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          The substitution $u=1/x$ yields $dx=-frac{1}{u^2},du$, so the integral becomes
          $$
          intfrac{-sin u}{sqrt{4+3sin2u}},du=
          intfrac{-sin u}{sqrt{4+3sin2u}},du
          $$

          This can be improved by setting $u=pi/4-v$, so we get
          $$
          frac{1}{sqrt{2}}intfrac{cos v-sin v}{sqrt{4+3cos2v}},dv=
          frac{1}{sqrt{2}}biggl(
          intfrac{cos v}{sqrt{7-6sin^2v}},dv
          -intfrac{sin v}{sqrt{6cos^2v+1}},dv
          biggr)
          $$

          that you should be able to manage.






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            As $(sin vpmcos v)^2=1pmsin2v$



            $$intdfrac{2sin v dv}{f(sin2v)}=intdfrac{(sin v-cos v) dv}{f(sin2v)}+intdfrac{(sin v+cos v) dv}{f(sin2v)}=I+J$$ where $f(sin2v)$ is a function of $sin2v$



            As $displaystyleint(sin v-cos v)=-(sin v+cos v)+C,$ set $sin v+cos v=y$ for



            $$I=intdfrac{(sin v-cos v) dv}{f((sin v+cos v)^2-1)}$$



            Similarly, set $sin v-cos v=z$ for $$J=intdfrac{(sin v+cos v) dv}{f(1-(sin v-cos v)^2)}$$






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076240%2fprimitive-of-a-function-with-sin-frac1x%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              The substitution $u=1/x$ yields $dx=-frac{1}{u^2},du$, so the integral becomes
              $$
              intfrac{-sin u}{sqrt{4+3sin2u}},du=
              intfrac{-sin u}{sqrt{4+3sin2u}},du
              $$

              This can be improved by setting $u=pi/4-v$, so we get
              $$
              frac{1}{sqrt{2}}intfrac{cos v-sin v}{sqrt{4+3cos2v}},dv=
              frac{1}{sqrt{2}}biggl(
              intfrac{cos v}{sqrt{7-6sin^2v}},dv
              -intfrac{sin v}{sqrt{6cos^2v+1}},dv
              biggr)
              $$

              that you should be able to manage.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                The substitution $u=1/x$ yields $dx=-frac{1}{u^2},du$, so the integral becomes
                $$
                intfrac{-sin u}{sqrt{4+3sin2u}},du=
                intfrac{-sin u}{sqrt{4+3sin2u}},du
                $$

                This can be improved by setting $u=pi/4-v$, so we get
                $$
                frac{1}{sqrt{2}}intfrac{cos v-sin v}{sqrt{4+3cos2v}},dv=
                frac{1}{sqrt{2}}biggl(
                intfrac{cos v}{sqrt{7-6sin^2v}},dv
                -intfrac{sin v}{sqrt{6cos^2v+1}},dv
                biggr)
                $$

                that you should be able to manage.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  The substitution $u=1/x$ yields $dx=-frac{1}{u^2},du$, so the integral becomes
                  $$
                  intfrac{-sin u}{sqrt{4+3sin2u}},du=
                  intfrac{-sin u}{sqrt{4+3sin2u}},du
                  $$

                  This can be improved by setting $u=pi/4-v$, so we get
                  $$
                  frac{1}{sqrt{2}}intfrac{cos v-sin v}{sqrt{4+3cos2v}},dv=
                  frac{1}{sqrt{2}}biggl(
                  intfrac{cos v}{sqrt{7-6sin^2v}},dv
                  -intfrac{sin v}{sqrt{6cos^2v+1}},dv
                  biggr)
                  $$

                  that you should be able to manage.






                  share|cite|improve this answer









                  $endgroup$



                  The substitution $u=1/x$ yields $dx=-frac{1}{u^2},du$, so the integral becomes
                  $$
                  intfrac{-sin u}{sqrt{4+3sin2u}},du=
                  intfrac{-sin u}{sqrt{4+3sin2u}},du
                  $$

                  This can be improved by setting $u=pi/4-v$, so we get
                  $$
                  frac{1}{sqrt{2}}intfrac{cos v-sin v}{sqrt{4+3cos2v}},dv=
                  frac{1}{sqrt{2}}biggl(
                  intfrac{cos v}{sqrt{7-6sin^2v}},dv
                  -intfrac{sin v}{sqrt{6cos^2v+1}},dv
                  biggr)
                  $$

                  that you should be able to manage.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 16 at 21:14









                  egregegreg

                  182k1486204




                  182k1486204























                      0












                      $begingroup$

                      As $(sin vpmcos v)^2=1pmsin2v$



                      $$intdfrac{2sin v dv}{f(sin2v)}=intdfrac{(sin v-cos v) dv}{f(sin2v)}+intdfrac{(sin v+cos v) dv}{f(sin2v)}=I+J$$ where $f(sin2v)$ is a function of $sin2v$



                      As $displaystyleint(sin v-cos v)=-(sin v+cos v)+C,$ set $sin v+cos v=y$ for



                      $$I=intdfrac{(sin v-cos v) dv}{f((sin v+cos v)^2-1)}$$



                      Similarly, set $sin v-cos v=z$ for $$J=intdfrac{(sin v+cos v) dv}{f(1-(sin v-cos v)^2)}$$






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        As $(sin vpmcos v)^2=1pmsin2v$



                        $$intdfrac{2sin v dv}{f(sin2v)}=intdfrac{(sin v-cos v) dv}{f(sin2v)}+intdfrac{(sin v+cos v) dv}{f(sin2v)}=I+J$$ where $f(sin2v)$ is a function of $sin2v$



                        As $displaystyleint(sin v-cos v)=-(sin v+cos v)+C,$ set $sin v+cos v=y$ for



                        $$I=intdfrac{(sin v-cos v) dv}{f((sin v+cos v)^2-1)}$$



                        Similarly, set $sin v-cos v=z$ for $$J=intdfrac{(sin v+cos v) dv}{f(1-(sin v-cos v)^2)}$$






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          As $(sin vpmcos v)^2=1pmsin2v$



                          $$intdfrac{2sin v dv}{f(sin2v)}=intdfrac{(sin v-cos v) dv}{f(sin2v)}+intdfrac{(sin v+cos v) dv}{f(sin2v)}=I+J$$ where $f(sin2v)$ is a function of $sin2v$



                          As $displaystyleint(sin v-cos v)=-(sin v+cos v)+C,$ set $sin v+cos v=y$ for



                          $$I=intdfrac{(sin v-cos v) dv}{f((sin v+cos v)^2-1)}$$



                          Similarly, set $sin v-cos v=z$ for $$J=intdfrac{(sin v+cos v) dv}{f(1-(sin v-cos v)^2)}$$






                          share|cite|improve this answer









                          $endgroup$



                          As $(sin vpmcos v)^2=1pmsin2v$



                          $$intdfrac{2sin v dv}{f(sin2v)}=intdfrac{(sin v-cos v) dv}{f(sin2v)}+intdfrac{(sin v+cos v) dv}{f(sin2v)}=I+J$$ where $f(sin2v)$ is a function of $sin2v$



                          As $displaystyleint(sin v-cos v)=-(sin v+cos v)+C,$ set $sin v+cos v=y$ for



                          $$I=intdfrac{(sin v-cos v) dv}{f((sin v+cos v)^2-1)}$$



                          Similarly, set $sin v-cos v=z$ for $$J=intdfrac{(sin v+cos v) dv}{f(1-(sin v-cos v)^2)}$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 17 at 7:55









                          lab bhattacharjeelab bhattacharjee

                          226k15157275




                          226k15157275






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076240%2fprimitive-of-a-function-with-sin-frac1x%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              SQL update select statement

                              'app-layout' is not a known element: how to share Component with different Modules