Prove $3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$
$begingroup$
This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$
For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$
And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$
So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$
Any idea? Who can help me with another solution? I hope to see that! Thanks!
inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality
$endgroup$
add a comment |
$begingroup$
This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$
For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$
And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$
So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$
Any idea? Who can help me with another solution? I hope to see that! Thanks!
inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality
$endgroup$
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49
add a comment |
$begingroup$
This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$
For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$
And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$
So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$
Any idea? Who can help me with another solution? I hope to see that! Thanks!
inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality
$endgroup$
This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$
For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$
And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$
So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$
Any idea? Who can help me with another solution? I hope to see that! Thanks!
inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality
inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality
edited Feb 19 at 0:55
Michael Rozenberg
104k1892197
104k1892197
asked Jun 2 '18 at 8:59
user548665
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49
add a comment |
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I think you mean $x+y+z=3.$
The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.
Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$
Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$
$endgroup$
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2805196%2fprove-3-leqq-x-sqrt1-y3-y-sqrt1-z3-z-sqrt1-x3-leqq-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I think you mean $x+y+z=3.$
The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.
Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$
Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$
$endgroup$
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
add a comment |
$begingroup$
I think you mean $x+y+z=3.$
The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.
Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$
Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$
$endgroup$
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
add a comment |
$begingroup$
I think you mean $x+y+z=3.$
The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.
Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$
Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$
$endgroup$
I think you mean $x+y+z=3.$
The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.
Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$
Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$
edited Jun 2 '18 at 9:30
answered Jun 2 '18 at 9:20
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
add a comment |
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2805196%2fprove-3-leqq-x-sqrt1-y3-y-sqrt1-z3-z-sqrt1-x3-leqq-5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17
$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17
$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49