Prove $3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$












0












$begingroup$


This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$



For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$



And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$



So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$



Any idea? Who can help me with another solution? I hope to see that! Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jun 2 '18 at 9:17










  • $begingroup$
    I think we need some condition.
    $endgroup$
    – Michael Rozenberg
    Jun 2 '18 at 9:17










  • $begingroup$
    Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
    $endgroup$
    – Chris Custer
    Jun 4 '18 at 0:49
















0












$begingroup$


This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$



For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$



And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$



So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$



Any idea? Who can help me with another solution? I hope to see that! Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jun 2 '18 at 9:17










  • $begingroup$
    I think we need some condition.
    $endgroup$
    – Michael Rozenberg
    Jun 2 '18 at 9:17










  • $begingroup$
    Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
    $endgroup$
    – Chris Custer
    Jun 4 '18 at 0:49














0












0








0


0



$begingroup$


This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$



For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$



And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$



So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$



Any idea? Who can help me with another solution? I hope to see that! Thanks!










share|cite|improve this question











$endgroup$




This is an old problem of Pham Kim Hung!
Prove: $$3leqq xsqrt{1+ y^{3}}+ ysqrt{1+ z^{3}}+ zsqrt{1+ x^{3}}leqq 5$$ with $x,,y,,zgeqq 0$ & $x+y+z=3$



For the LHS, we have:
$$left { sumlimits_{cyc}xsqrt{1+ y^{3}} right }^{2}= sumlimits_{cyc}left { x^{2}+ x^{3}z^{2}+ 2,xysqrt{left ( 1+ y^{3} right )left ( 1+ z^{3} right )} right }geqq sumlimits_{cyc}left { x^{2}+ 2,xy right }= 9$$



And the RHS, we also have:
$$sumlimits_{cyc}xsqrt{1+ y^{3}} = sumlimits_{cyc} xsqrt{left ( 1+ y right )left ( 1+ y^{2}- y right )}leqq sumlimits_{cyc}frac{xleft { 2+ y^{2} right }}{2}= 3+ frac{1}{2}sumlimits_{cyc}xy^{2}leqq 5$$



So, we need to prove: $xy^{2}+ yz^{2}+ zx^{2}leqq 4$ with $x= 3- y- z$
or $$4- xy^{2}- yz^{2}- zx^{2}= left { 3- y- z right }y^{2}- yz^{2}- zleft { 3- y- z right }^{2}= left { y- 1 right }^{2}left { frac{underbrace{y+ 4,z- 5left ( 3- y- z right )}_{y+ 4,z- 5,xgeqq 0}}{3} right }+ left { 3- y- z right }left { frac{left ( 2,y+ 2,z- 3 right )^{2}+ 3}{4} right }geqq 0$$
with $x= minleft { x,,y,,z right }$



Any idea? Who can help me with another solution? I hope to see that! Thanks!







inequality radicals substitution a.m.-g.m.-inequality rearrangement-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 19 at 0:55









Michael Rozenberg

104k1892197




104k1892197










asked Jun 2 '18 at 8:59







user548665



















  • $begingroup$
    As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jun 2 '18 at 9:17










  • $begingroup$
    I think we need some condition.
    $endgroup$
    – Michael Rozenberg
    Jun 2 '18 at 9:17










  • $begingroup$
    Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
    $endgroup$
    – Chris Custer
    Jun 4 '18 at 0:49


















  • $begingroup$
    As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Jun 2 '18 at 9:17










  • $begingroup$
    I think we need some condition.
    $endgroup$
    – Michael Rozenberg
    Jun 2 '18 at 9:17










  • $begingroup$
    Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
    $endgroup$
    – Chris Custer
    Jun 4 '18 at 0:49
















$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17




$begingroup$
As stated, the problem is incorrect, by taking $x,y,z$ very large, say all equal to $100$. Please correct the title statement.
$endgroup$
– астон вілла олоф мэллбэрг
Jun 2 '18 at 9:17












$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17




$begingroup$
I think we need some condition.
$endgroup$
– Michael Rozenberg
Jun 2 '18 at 9:17












$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49




$begingroup$
Possible duplicate of Proof of the inequality $frac{a}{b+c}+frac{b}{a+c}+frac{c}{a+b} geq frac{3}{2}$
$endgroup$
– Chris Custer
Jun 4 '18 at 0:49










1 Answer
1






active

oldest

votes


















2












$begingroup$

I think you mean $x+y+z=3.$



The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.



Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$



Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
    $endgroup$
    – Michael Rozenberg
    Feb 17 at 6:51











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2805196%2fprove-3-leqq-x-sqrt1-y3-y-sqrt1-z3-z-sqrt1-x3-leqq-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown
























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

I think you mean $x+y+z=3.$



The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.



Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$



Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
    $endgroup$
    – Michael Rozenberg
    Feb 17 at 6:51
















2












$begingroup$

I think you mean $x+y+z=3.$



The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.



Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$



Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    @Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
    $endgroup$
    – Michael Rozenberg
    Feb 17 at 6:51














2












2








2





$begingroup$

I think you mean $x+y+z=3.$



The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.



Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$



Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$






share|cite|improve this answer











$endgroup$



I think you mean $x+y+z=3.$



The left inequality:
$$sum_{cyc}xsqrt{1+y^3}geqsum_{cyc}x=3.$$
The right inequality.



Let ${x,y,z}={a,b,c}$, where $ageq bgeq c.$



Thus, by AM-GM, Rearrangement and AM-GM we obtain:
$$sum_{cyc}xsqrt{1+y^3}=sum_{cyc}xsqrt{(1+y)(1-y+y^2)}leqfrac{1}{2}sum_{cyc}x(1+y+1-y+y^2)=$$
$$=3+frac{1}{2}(xy^2+yz^2+zx^2)=3+frac{1}{2}(xycdot y+yzcdot z+zxcdot x)leq$$
$$leq3+frac{1}{2}(abcdot a+accdot b+bccdot c)=3+frac{1}{2}b(a^2+ac+c^2)leq$$
$$leq3+frac{1}{4}cdot2b(a+c)^2leq3+frac{1}{4}left(frac{2b+a+c+a+c}{3}right)^3=5.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jun 2 '18 at 9:30

























answered Jun 2 '18 at 9:20









Michael RozenbergMichael Rozenberg

104k1892197




104k1892197












  • $begingroup$
    @Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
    $endgroup$
    – Michael Rozenberg
    Feb 17 at 6:51


















  • $begingroup$
    @Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
    $endgroup$
    – Michael Rozenberg
    Feb 17 at 6:51
















$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51




$begingroup$
@Cô_Ngốc_Lớp_Trưởng I solved this problem for you. Why you down-voted?
$endgroup$
– Michael Rozenberg
Feb 17 at 6:51


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2805196%2fprove-3-leqq-x-sqrt1-y3-y-sqrt1-z3-z-sqrt1-x3-leqq-5%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith