Showing a measure is countably additive if it's finitely additive
$begingroup$
Let $mu$ be a finitely additive nonnegative set function on some measurable space $(Omega, mathcal{F})$ with the continuity property $$B_nin mathcal{F},, B_ndownarrowemptyset, , mu(B_n)<inftyRightarrow mu(B_n)to 0 tag{$*$} $$
is countably additive when $mu(Omega)<infty$.
I am having difficulty using the property to show $mu$ is countably additive. I would like to prove for any disjoint collection of sets $(A_i)$, $lim mu (bigcup _{i=1} ^n A_n)=mu(bigcup _{i=1} ^infty A_n)$. WLOG, (by rearranging indices) suppose $(A_n)$ is decreasing. Then $A_ndownarrow emptyset$. By $(*)$ $mu(A_n)to 0$. I don't see how this helps or how this implies $sum_i mu (A_i)<infty$.
- How can I show $mu$ is countably additive?
- Doesn't the condition that $B_ndownarrow emptyset$ automatically imply $mu(B_n)to 0$?
measure-theory continuity
$endgroup$
add a comment |
$begingroup$
Let $mu$ be a finitely additive nonnegative set function on some measurable space $(Omega, mathcal{F})$ with the continuity property $$B_nin mathcal{F},, B_ndownarrowemptyset, , mu(B_n)<inftyRightarrow mu(B_n)to 0 tag{$*$} $$
is countably additive when $mu(Omega)<infty$.
I am having difficulty using the property to show $mu$ is countably additive. I would like to prove for any disjoint collection of sets $(A_i)$, $lim mu (bigcup _{i=1} ^n A_n)=mu(bigcup _{i=1} ^infty A_n)$. WLOG, (by rearranging indices) suppose $(A_n)$ is decreasing. Then $A_ndownarrow emptyset$. By $(*)$ $mu(A_n)to 0$. I don't see how this helps or how this implies $sum_i mu (A_i)<infty$.
- How can I show $mu$ is countably additive?
- Doesn't the condition that $B_ndownarrow emptyset$ automatically imply $mu(B_n)to 0$?
measure-theory continuity
$endgroup$
add a comment |
$begingroup$
Let $mu$ be a finitely additive nonnegative set function on some measurable space $(Omega, mathcal{F})$ with the continuity property $$B_nin mathcal{F},, B_ndownarrowemptyset, , mu(B_n)<inftyRightarrow mu(B_n)to 0 tag{$*$} $$
is countably additive when $mu(Omega)<infty$.
I am having difficulty using the property to show $mu$ is countably additive. I would like to prove for any disjoint collection of sets $(A_i)$, $lim mu (bigcup _{i=1} ^n A_n)=mu(bigcup _{i=1} ^infty A_n)$. WLOG, (by rearranging indices) suppose $(A_n)$ is decreasing. Then $A_ndownarrow emptyset$. By $(*)$ $mu(A_n)to 0$. I don't see how this helps or how this implies $sum_i mu (A_i)<infty$.
- How can I show $mu$ is countably additive?
- Doesn't the condition that $B_ndownarrow emptyset$ automatically imply $mu(B_n)to 0$?
measure-theory continuity
$endgroup$
Let $mu$ be a finitely additive nonnegative set function on some measurable space $(Omega, mathcal{F})$ with the continuity property $$B_nin mathcal{F},, B_ndownarrowemptyset, , mu(B_n)<inftyRightarrow mu(B_n)to 0 tag{$*$} $$
is countably additive when $mu(Omega)<infty$.
I am having difficulty using the property to show $mu$ is countably additive. I would like to prove for any disjoint collection of sets $(A_i)$, $lim mu (bigcup _{i=1} ^n A_n)=mu(bigcup _{i=1} ^infty A_n)$. WLOG, (by rearranging indices) suppose $(A_n)$ is decreasing. Then $A_ndownarrow emptyset$. By $(*)$ $mu(A_n)to 0$. I don't see how this helps or how this implies $sum_i mu (A_i)<infty$.
- How can I show $mu$ is countably additive?
- Doesn't the condition that $B_ndownarrow emptyset$ automatically imply $mu(B_n)to 0$?
measure-theory continuity
measure-theory continuity
edited Sep 27 '15 at 8:21
cap
asked Sep 27 '15 at 8:07
capcap
7183926
7183926
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: note that
$$cup_0^infty A_n = cup_0^N A_n cup left( cup_{N+1}^infty A_nright) $$
is a finite union and that you can apply the assumption to the sequence $(cup_{N+1}^infty A_n)_N$
$endgroup$
add a comment |
$begingroup$
Take any ${E_i}$ a sequence of disjoint sets in $mathcal{F}$, and $Etriangleqbigcuplimits_{i=1}^{infty}E_i$. We have to show that $mu(E) = sumlimits_{i=1}^{infty}mu(E_i)$.
Consider the sets $F_n = bigcuplimits_{i=1}^n E_i$. You can observe that the sequence $(Esetminus F_n)downarrowemptyset$. Note that the finiteness of $(Esetminus F_n)$ for every $n$ follows from the fact that $mu(Omega)<infty$.
Now since $mu$ is finitely additive $mu(F_n)=sumlimits_{i=1}^n mu(E_i)$ .
$$ mu(E)=mu(Esetminus F_n)+sumlimits_{i=1}^n mu(E_i)$$
Take limits on both the sides;
$$mu(E)=lim_{ntoinfty}mu(Esetminus F_n) + sumlimits_{i=1}^infty mu(E_i)$$
By the property of $mu$ mentioned in the problem, $limlimits_{ntoinfty}mu(Esetminus F_n)=0$. And hence $mu(E)=sumlimits_{i=1}^infty mu(E_i)$.For your second doubt assume the measure (you can verify it is indeed a measure) $mu:mathcal{P}(mathbb{R})mapstomathbb{R}^*$ defined as
$$mu(E)=begin{cases}
infty & text{if $E$ is infinite}\n &text{if $E$ is contains n elements }end{cases}$$
Now consider the sets $F_n triangleqleft(0,frac{1}{n}right]$. Note that though $F_ndownarrowemptyset$, $limlimits_{ntoinfty}
mu(F_n)=infty$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1453243%2fshowing-a-measure-is-countably-additive-if-its-finitely-additive%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: note that
$$cup_0^infty A_n = cup_0^N A_n cup left( cup_{N+1}^infty A_nright) $$
is a finite union and that you can apply the assumption to the sequence $(cup_{N+1}^infty A_n)_N$
$endgroup$
add a comment |
$begingroup$
Hint: note that
$$cup_0^infty A_n = cup_0^N A_n cup left( cup_{N+1}^infty A_nright) $$
is a finite union and that you can apply the assumption to the sequence $(cup_{N+1}^infty A_n)_N$
$endgroup$
add a comment |
$begingroup$
Hint: note that
$$cup_0^infty A_n = cup_0^N A_n cup left( cup_{N+1}^infty A_nright) $$
is a finite union and that you can apply the assumption to the sequence $(cup_{N+1}^infty A_n)_N$
$endgroup$
Hint: note that
$$cup_0^infty A_n = cup_0^N A_n cup left( cup_{N+1}^infty A_nright) $$
is a finite union and that you can apply the assumption to the sequence $(cup_{N+1}^infty A_n)_N$
answered Sep 27 '15 at 8:24
ThomasThomas
16.9k21731
16.9k21731
add a comment |
add a comment |
$begingroup$
Take any ${E_i}$ a sequence of disjoint sets in $mathcal{F}$, and $Etriangleqbigcuplimits_{i=1}^{infty}E_i$. We have to show that $mu(E) = sumlimits_{i=1}^{infty}mu(E_i)$.
Consider the sets $F_n = bigcuplimits_{i=1}^n E_i$. You can observe that the sequence $(Esetminus F_n)downarrowemptyset$. Note that the finiteness of $(Esetminus F_n)$ for every $n$ follows from the fact that $mu(Omega)<infty$.
Now since $mu$ is finitely additive $mu(F_n)=sumlimits_{i=1}^n mu(E_i)$ .
$$ mu(E)=mu(Esetminus F_n)+sumlimits_{i=1}^n mu(E_i)$$
Take limits on both the sides;
$$mu(E)=lim_{ntoinfty}mu(Esetminus F_n) + sumlimits_{i=1}^infty mu(E_i)$$
By the property of $mu$ mentioned in the problem, $limlimits_{ntoinfty}mu(Esetminus F_n)=0$. And hence $mu(E)=sumlimits_{i=1}^infty mu(E_i)$.For your second doubt assume the measure (you can verify it is indeed a measure) $mu:mathcal{P}(mathbb{R})mapstomathbb{R}^*$ defined as
$$mu(E)=begin{cases}
infty & text{if $E$ is infinite}\n &text{if $E$ is contains n elements }end{cases}$$
Now consider the sets $F_n triangleqleft(0,frac{1}{n}right]$. Note that though $F_ndownarrowemptyset$, $limlimits_{ntoinfty}
mu(F_n)=infty$.
$endgroup$
add a comment |
$begingroup$
Take any ${E_i}$ a sequence of disjoint sets in $mathcal{F}$, and $Etriangleqbigcuplimits_{i=1}^{infty}E_i$. We have to show that $mu(E) = sumlimits_{i=1}^{infty}mu(E_i)$.
Consider the sets $F_n = bigcuplimits_{i=1}^n E_i$. You can observe that the sequence $(Esetminus F_n)downarrowemptyset$. Note that the finiteness of $(Esetminus F_n)$ for every $n$ follows from the fact that $mu(Omega)<infty$.
Now since $mu$ is finitely additive $mu(F_n)=sumlimits_{i=1}^n mu(E_i)$ .
$$ mu(E)=mu(Esetminus F_n)+sumlimits_{i=1}^n mu(E_i)$$
Take limits on both the sides;
$$mu(E)=lim_{ntoinfty}mu(Esetminus F_n) + sumlimits_{i=1}^infty mu(E_i)$$
By the property of $mu$ mentioned in the problem, $limlimits_{ntoinfty}mu(Esetminus F_n)=0$. And hence $mu(E)=sumlimits_{i=1}^infty mu(E_i)$.For your second doubt assume the measure (you can verify it is indeed a measure) $mu:mathcal{P}(mathbb{R})mapstomathbb{R}^*$ defined as
$$mu(E)=begin{cases}
infty & text{if $E$ is infinite}\n &text{if $E$ is contains n elements }end{cases}$$
Now consider the sets $F_n triangleqleft(0,frac{1}{n}right]$. Note that though $F_ndownarrowemptyset$, $limlimits_{ntoinfty}
mu(F_n)=infty$.
$endgroup$
add a comment |
$begingroup$
Take any ${E_i}$ a sequence of disjoint sets in $mathcal{F}$, and $Etriangleqbigcuplimits_{i=1}^{infty}E_i$. We have to show that $mu(E) = sumlimits_{i=1}^{infty}mu(E_i)$.
Consider the sets $F_n = bigcuplimits_{i=1}^n E_i$. You can observe that the sequence $(Esetminus F_n)downarrowemptyset$. Note that the finiteness of $(Esetminus F_n)$ for every $n$ follows from the fact that $mu(Omega)<infty$.
Now since $mu$ is finitely additive $mu(F_n)=sumlimits_{i=1}^n mu(E_i)$ .
$$ mu(E)=mu(Esetminus F_n)+sumlimits_{i=1}^n mu(E_i)$$
Take limits on both the sides;
$$mu(E)=lim_{ntoinfty}mu(Esetminus F_n) + sumlimits_{i=1}^infty mu(E_i)$$
By the property of $mu$ mentioned in the problem, $limlimits_{ntoinfty}mu(Esetminus F_n)=0$. And hence $mu(E)=sumlimits_{i=1}^infty mu(E_i)$.For your second doubt assume the measure (you can verify it is indeed a measure) $mu:mathcal{P}(mathbb{R})mapstomathbb{R}^*$ defined as
$$mu(E)=begin{cases}
infty & text{if $E$ is infinite}\n &text{if $E$ is contains n elements }end{cases}$$
Now consider the sets $F_n triangleqleft(0,frac{1}{n}right]$. Note that though $F_ndownarrowemptyset$, $limlimits_{ntoinfty}
mu(F_n)=infty$.
$endgroup$
Take any ${E_i}$ a sequence of disjoint sets in $mathcal{F}$, and $Etriangleqbigcuplimits_{i=1}^{infty}E_i$. We have to show that $mu(E) = sumlimits_{i=1}^{infty}mu(E_i)$.
Consider the sets $F_n = bigcuplimits_{i=1}^n E_i$. You can observe that the sequence $(Esetminus F_n)downarrowemptyset$. Note that the finiteness of $(Esetminus F_n)$ for every $n$ follows from the fact that $mu(Omega)<infty$.
Now since $mu$ is finitely additive $mu(F_n)=sumlimits_{i=1}^n mu(E_i)$ .
$$ mu(E)=mu(Esetminus F_n)+sumlimits_{i=1}^n mu(E_i)$$
Take limits on both the sides;
$$mu(E)=lim_{ntoinfty}mu(Esetminus F_n) + sumlimits_{i=1}^infty mu(E_i)$$
By the property of $mu$ mentioned in the problem, $limlimits_{ntoinfty}mu(Esetminus F_n)=0$. And hence $mu(E)=sumlimits_{i=1}^infty mu(E_i)$.For your second doubt assume the measure (you can verify it is indeed a measure) $mu:mathcal{P}(mathbb{R})mapstomathbb{R}^*$ defined as
$$mu(E)=begin{cases}
infty & text{if $E$ is infinite}\n &text{if $E$ is contains n elements }end{cases}$$
Now consider the sets $F_n triangleqleft(0,frac{1}{n}right]$. Note that though $F_ndownarrowemptyset$, $limlimits_{ntoinfty}
mu(F_n)=infty$.
edited Jan 17 at 7:36
user128949
43
43
answered Mar 31 '18 at 13:22


Soham ChatterjeeSoham Chatterjee
134
134
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1453243%2fshowing-a-measure-is-countably-additive-if-its-finitely-additive%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown