Supremum of norms of images of unit ball equals infimum of upper bounds of norms of images in the whole space












1












$begingroup$


For a linear operator $T in B(X,Y)$, there exists





  • $k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;


  • $k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.


This is supposed to imply that
$$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
$$

but this is not proved. I'd like to add rigour to the statement.



Also, the above should imply that for all $y in X$
$$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
$$










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    For a linear operator $T in B(X,Y)$, there exists





    • $k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;


    • $k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.


    This is supposed to imply that
    $$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
    $$

    but this is not proved. I'd like to add rigour to the statement.



    Also, the above should imply that for all $y in X$
    $$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
    $$










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      For a linear operator $T in B(X,Y)$, there exists





      • $k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;


      • $k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.


      This is supposed to imply that
      $$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
      $$

      but this is not proved. I'd like to add rigour to the statement.



      Also, the above should imply that for all $y in X$
      $$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
      $$










      share|cite|improve this question











      $endgroup$




      For a linear operator $T in B(X,Y)$, there exists





      • $k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;


      • $k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.


      This is supposed to imply that
      $$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
      $$

      but this is not proved. I'd like to add rigour to the statement.



      Also, the above should imply that for all $y in X$
      $$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
      $$







      functional-analysis analysis operator-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 16 at 21:36







      Jos van Nieuwman

















      asked Jan 16 at 21:28









      Jos van NieuwmanJos van Nieuwman

      469




      469






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
          $$
          |Tx|leq k|x|=k.
          $$

          As we can do this for all such $k$, we get
          $$
          |Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
          $$

          And we can do this for any $x$ with $|x|leq1$, so
          $$
          sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
          $$

          Also, for any nonzero $xin X$,
          $$
          |Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
          $$

          Thus
          $$
          inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
          $$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076319%2fsupremum-of-norms-of-images-of-unit-ball-equals-infimum-of-upper-bounds-of-norms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
            $$
            |Tx|leq k|x|=k.
            $$

            As we can do this for all such $k$, we get
            $$
            |Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
            $$

            And we can do this for any $x$ with $|x|leq1$, so
            $$
            sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
            $$

            Also, for any nonzero $xin X$,
            $$
            |Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
            $$

            Thus
            $$
            inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
            $$






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
              $$
              |Tx|leq k|x|=k.
              $$

              As we can do this for all such $k$, we get
              $$
              |Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
              $$

              And we can do this for any $x$ with $|x|leq1$, so
              $$
              sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
              $$

              Also, for any nonzero $xin X$,
              $$
              |Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
              $$

              Thus
              $$
              inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
              $$






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
                $$
                |Tx|leq k|x|=k.
                $$

                As we can do this for all such $k$, we get
                $$
                |Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
                $$

                And we can do this for any $x$ with $|x|leq1$, so
                $$
                sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
                $$

                Also, for any nonzero $xin X$,
                $$
                |Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
                $$

                Thus
                $$
                inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
                $$






                share|cite|improve this answer









                $endgroup$



                Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
                $$
                |Tx|leq k|x|=k.
                $$

                As we can do this for all such $k$, we get
                $$
                |Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
                $$

                And we can do this for any $x$ with $|x|leq1$, so
                $$
                sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
                $$

                Also, for any nonzero $xin X$,
                $$
                |Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
                $$

                Thus
                $$
                inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
                $$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 16 at 21:44









                Martin ArgeramiMartin Argerami

                127k1182183




                127k1182183






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076319%2fsupremum-of-norms-of-images-of-unit-ball-equals-infimum-of-upper-bounds-of-norms%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith