Supremum of norms of images of unit ball equals infimum of upper bounds of norms of images in the whole space
$begingroup$
For a linear operator $T in B(X,Y)$, there exists
$k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;
$k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.
This is supposed to imply that
$$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
$$
but this is not proved. I'd like to add rigour to the statement.
Also, the above should imply that for all $y in X$
$$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
$$
functional-analysis analysis operator-theory
$endgroup$
add a comment |
$begingroup$
For a linear operator $T in B(X,Y)$, there exists
$k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;
$k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.
This is supposed to imply that
$$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
$$
but this is not proved. I'd like to add rigour to the statement.
Also, the above should imply that for all $y in X$
$$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
$$
functional-analysis analysis operator-theory
$endgroup$
add a comment |
$begingroup$
For a linear operator $T in B(X,Y)$, there exists
$k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;
$k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.
This is supposed to imply that
$$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
$$
but this is not proved. I'd like to add rigour to the statement.
Also, the above should imply that for all $y in X$
$$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
$$
functional-analysis analysis operator-theory
$endgroup$
For a linear operator $T in B(X,Y)$, there exists
$k in mathbb{R}_{>0}$ such that for all $x$ in the unit ball of $X: lVert T(x)rVert leq k $;
$k in mathbb{R}_{>0}$ such that for all $x in X: lVert T(x)rVert leq k lVert xrVert$.
This is supposed to imply that
$$text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } = text{inf}{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)},
$$
but this is not proved. I'd like to add rigour to the statement.
Also, the above should imply that for all $y in X$
$$lVert T(y)rVert leq text{sup}{lVert T(x) rVert mid lVert xrVert leq 1 } lVert yrVert.
$$
functional-analysis analysis operator-theory
functional-analysis analysis operator-theory
edited Jan 16 at 21:36
Jos van Nieuwman
asked Jan 16 at 21:28
Jos van NieuwmanJos van Nieuwman
469
469
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
$$
|Tx|leq k|x|=k.
$$
As we can do this for all such $k$, we get
$$
|Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
And we can do this for any $x$ with $|x|leq1$, so
$$
sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
Also, for any nonzero $xin X$,
$$
|Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
$$
Thus
$$
inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076319%2fsupremum-of-norms-of-images-of-unit-ball-equals-infimum-of-upper-bounds-of-norms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
$$
|Tx|leq k|x|=k.
$$
As we can do this for all such $k$, we get
$$
|Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
And we can do this for any $x$ with $|x|leq1$, so
$$
sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
Also, for any nonzero $xin X$,
$$
|Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
$$
Thus
$$
inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
$$
$endgroup$
add a comment |
$begingroup$
Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
$$
|Tx|leq k|x|=k.
$$
As we can do this for all such $k$, we get
$$
|Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
And we can do this for any $x$ with $|x|leq1$, so
$$
sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
Also, for any nonzero $xin X$,
$$
|Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
$$
Thus
$$
inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
$$
$endgroup$
add a comment |
$begingroup$
Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
$$
|Tx|leq k|x|=k.
$$
As we can do this for all such $k$, we get
$$
|Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
And we can do this for any $x$ with $|x|leq1$, so
$$
sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
Also, for any nonzero $xin X$,
$$
|Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
$$
Thus
$$
inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
$$
$endgroup$
Take any $kin {k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}$. If $|x|leq1$, then
$$
|Tx|leq k|x|=k.
$$
As we can do this for all such $k$, we get
$$
|Tx|leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
And we can do this for any $x$ with $|x|leq1$, so
$$
sup{lVert T(x) rVert mid lVert xrVert leq 1 } leq inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}.
$$
Also, for any nonzero $xin X$,
$$
|Tx|=|Tleft(tfrac x{|x|}right)|,|x|leq sup{lVert T(x) rVert mid lVert xrVert leq 1 },|x|.
$$
Thus
$$
inf{k in mathbb{R}_{>0} mid (forall x in X)(lVert T(x)rVert leq k lVert xrVert)}leq sup{lVert T(x) rVert mid lVert xrVert leq 1 }.
$$
answered Jan 16 at 21:44


Martin ArgeramiMartin Argerami
127k1182183
127k1182183
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3076319%2fsupremum-of-norms-of-images-of-unit-ball-equals-infimum-of-upper-bounds-of-norms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown