A curve is defined by the parametric equations $x=2t+frac{1}{t^2},; y=2t-frac{1}{t^2}$. Find the Cartesian...
$begingroup$
A curve is defined by the parametric equations
$$x=2t+frac{1}{t^2}$$
$$y=2t-frac{1}{t^2}$$
Show that the curve has the Cartesian equation $(x-y)(x+y)^2=k$
So I understand I need to eliminate the parameter $t$, but I'm not seeing an easy way to do this as I cannot rearrange for $t$ and then substitute. Any help will be appreciated.
parametric curves
$endgroup$
add a comment |
$begingroup$
A curve is defined by the parametric equations
$$x=2t+frac{1}{t^2}$$
$$y=2t-frac{1}{t^2}$$
Show that the curve has the Cartesian equation $(x-y)(x+y)^2=k$
So I understand I need to eliminate the parameter $t$, but I'm not seeing an easy way to do this as I cannot rearrange for $t$ and then substitute. Any help will be appreciated.
parametric curves
$endgroup$
add a comment |
$begingroup$
A curve is defined by the parametric equations
$$x=2t+frac{1}{t^2}$$
$$y=2t-frac{1}{t^2}$$
Show that the curve has the Cartesian equation $(x-y)(x+y)^2=k$
So I understand I need to eliminate the parameter $t$, but I'm not seeing an easy way to do this as I cannot rearrange for $t$ and then substitute. Any help will be appreciated.
parametric curves
$endgroup$
A curve is defined by the parametric equations
$$x=2t+frac{1}{t^2}$$
$$y=2t-frac{1}{t^2}$$
Show that the curve has the Cartesian equation $(x-y)(x+y)^2=k$
So I understand I need to eliminate the parameter $t$, but I'm not seeing an easy way to do this as I cannot rearrange for $t$ and then substitute. Any help will be appreciated.
parametric curves
parametric curves
edited Jan 20 at 14:35
user376343
3,9234829
3,9234829
asked Jan 20 at 12:01
H.LinkhornH.Linkhorn
473113
473113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$x-y=frac{2}{t^2}$$
$$(x+y)^2=(4t)^2=16t^2$$
$$(x-y)(x+y)^2=frac{2}{t^2}(16t^2)=32$$
$endgroup$
add a comment |
$begingroup$
Whenever is given a parametric system $$begin{cases}x=a(t)+b(t)\y=a(t)-b(t),;end{cases}$$ computing $x+y;$ and $;x-y;$ can help to eliminate the parameter.
In the present case $$begin{cases}x+y=4t\x-y={2over{t^2}}end{cases}$$ Since $(x-y)=k(x+y)^{-2},$ we obtain the constant as $(x-y)(x+y)^2.$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080494%2fa-curve-is-defined-by-the-parametric-equations-x-2t-frac1t2-y-2t-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$x-y=frac{2}{t^2}$$
$$(x+y)^2=(4t)^2=16t^2$$
$$(x-y)(x+y)^2=frac{2}{t^2}(16t^2)=32$$
$endgroup$
add a comment |
$begingroup$
$$x-y=frac{2}{t^2}$$
$$(x+y)^2=(4t)^2=16t^2$$
$$(x-y)(x+y)^2=frac{2}{t^2}(16t^2)=32$$
$endgroup$
add a comment |
$begingroup$
$$x-y=frac{2}{t^2}$$
$$(x+y)^2=(4t)^2=16t^2$$
$$(x-y)(x+y)^2=frac{2}{t^2}(16t^2)=32$$
$endgroup$
$$x-y=frac{2}{t^2}$$
$$(x+y)^2=(4t)^2=16t^2$$
$$(x-y)(x+y)^2=frac{2}{t^2}(16t^2)=32$$
answered Jan 20 at 12:11


LarryLarry
2,41331129
2,41331129
add a comment |
add a comment |
$begingroup$
Whenever is given a parametric system $$begin{cases}x=a(t)+b(t)\y=a(t)-b(t),;end{cases}$$ computing $x+y;$ and $;x-y;$ can help to eliminate the parameter.
In the present case $$begin{cases}x+y=4t\x-y={2over{t^2}}end{cases}$$ Since $(x-y)=k(x+y)^{-2},$ we obtain the constant as $(x-y)(x+y)^2.$
$endgroup$
add a comment |
$begingroup$
Whenever is given a parametric system $$begin{cases}x=a(t)+b(t)\y=a(t)-b(t),;end{cases}$$ computing $x+y;$ and $;x-y;$ can help to eliminate the parameter.
In the present case $$begin{cases}x+y=4t\x-y={2over{t^2}}end{cases}$$ Since $(x-y)=k(x+y)^{-2},$ we obtain the constant as $(x-y)(x+y)^2.$
$endgroup$
add a comment |
$begingroup$
Whenever is given a parametric system $$begin{cases}x=a(t)+b(t)\y=a(t)-b(t),;end{cases}$$ computing $x+y;$ and $;x-y;$ can help to eliminate the parameter.
In the present case $$begin{cases}x+y=4t\x-y={2over{t^2}}end{cases}$$ Since $(x-y)=k(x+y)^{-2},$ we obtain the constant as $(x-y)(x+y)^2.$
$endgroup$
Whenever is given a parametric system $$begin{cases}x=a(t)+b(t)\y=a(t)-b(t),;end{cases}$$ computing $x+y;$ and $;x-y;$ can help to eliminate the parameter.
In the present case $$begin{cases}x+y=4t\x-y={2over{t^2}}end{cases}$$ Since $(x-y)=k(x+y)^{-2},$ we obtain the constant as $(x-y)(x+y)^2.$
answered Jan 20 at 14:45
user376343user376343
3,9234829
3,9234829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080494%2fa-curve-is-defined-by-the-parametric-equations-x-2t-frac1t2-y-2t-frac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown