Solving the indefinite integral $int frac{1}{x^2+x+1} dx$
$begingroup$
I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?
real-analysis integration indefinite-integrals fractions substitution
$endgroup$
add a comment |
$begingroup$
I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?
real-analysis integration indefinite-integrals fractions substitution
$endgroup$
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17
add a comment |
$begingroup$
I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?
real-analysis integration indefinite-integrals fractions substitution
$endgroup$
I want to solve the following indefinite integral:
(1) $$int frac{1}{x^2+x+1} dx$$
completing the square:
(2) $$=int frac{1}{(x+frac{1}{2})^2+frac{3}{4}} dx$$
Substitution:
(3) $$u=frac{2x+1}{sqrt 3}$$ brings:
(4) $$dx=frac{sqrt 3}{2} du$$
(5) $$= frac{2}{sqrt 3}int frac{1}{u^2+1} du$$
Then getting standard integral
(6) $$= arctan(u)$$
and solving the integral and substitute back is not the problem. But I have a problem understanding the substitution in step (3). I don't know where the $sqrt 3$ beneath the fraction line comes from and how the formula ends in the standard integral in (5) on the right side. Could someone explain these steps in a bit more detail?
real-analysis integration indefinite-integrals fractions substitution
real-analysis integration indefinite-integrals fractions substitution
edited Jan 5 '18 at 9:31
Michael Rozenberg
107k1895199
107k1895199
asked Jan 5 '18 at 9:13
MBDMBD
323
323
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17
add a comment |
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$
$endgroup$
add a comment |
$begingroup$
We may take a more general approach here. Consider the integral
$$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
$$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
$$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
Plug in $a=b=c=1$ to get your integral
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2592789%2fsolving-the-indefinite-integral-int-frac1x2x1-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$
$endgroup$
add a comment |
$begingroup$
$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$
$endgroup$
add a comment |
$begingroup$
$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$
$endgroup$
$$left(x+frac{1}{2}right)^2+frac{3}{4}=left(frac{2x+1}{2}right)^2+left(frac{sqrt3}{2}right)^2=frac{3}{4}left(left(frac{2x+1}{sqrt3}right)^2+1right)=frac{3}{4}(u^2+1).$$
Since $frac{2x+1}{sqrt3}=u$, we have $$left(frac{2x+1}{sqrt3}right)'dx=du$$ or $$frac{2}{sqrt3}dx=du$$ or
$$dx=frac{sqrt3}{2}du.$$
Thus, $$intfrac{1}{x^2+x+1}dx=intfrac{1}{frac{3}{4}(u^2+1)}cdotfrac{sqrt3}{2}du=frac{2}{sqrt3}intfrac{1}{1+u^2}du.$$
edited Jan 5 '18 at 9:23
answered Jan 5 '18 at 9:16
Michael RozenbergMichael Rozenberg
107k1895199
107k1895199
add a comment |
add a comment |
$begingroup$
We may take a more general approach here. Consider the integral
$$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
$$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
$$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
Plug in $a=b=c=1$ to get your integral
$endgroup$
add a comment |
$begingroup$
We may take a more general approach here. Consider the integral
$$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
$$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
$$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
Plug in $a=b=c=1$ to get your integral
$endgroup$
add a comment |
$begingroup$
We may take a more general approach here. Consider the integral
$$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
$$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
$$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
Plug in $a=b=c=1$ to get your integral
$endgroup$
We may take a more general approach here. Consider the integral
$$I(x;a,b,c)=intfrac{mathrm dx}{ax^2+bx+c}=intfrac{mathrm dx}{a(x+frac{b}{2a})^2+g}$$
Here $g=c-frac{b^2}{4a}$. If we assume that $4ac>b^2$, then we may make the substitution $x+frac{b}{2a}=sqrt{frac{g}{a}}tan u$ which gives
$$I(x;a,b,c)=sqrt{frac{g}{a}}intfrac{sec^2u,mathrm du}{gtan^2u+g}$$
$$I(x;a,b,c)=frac{u}{sqrt{ag}}$$
$$I(x;a,b,c)=frac2{sqrt{4ac-b^2}}arctanfrac{2ax+b}{sqrt{4ac-b^2}}+C$$
Plug in $a=b=c=1$ to get your integral
answered Jan 22 at 4:39


clathratusclathratus
4,8611338
4,8611338
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2592789%2fsolving-the-indefinite-integral-int-frac1x2x1-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Try $u=x+frac{1}{2}$ or $u=2x+1$ and see what happens. It may work it may not. Just a thought. Often proofs are worked out in a slightly ad-hoc and messy way, then the mathematician will tidy up his/her proof to present the most elegant form.
$endgroup$
– Antinous
Jan 5 '18 at 9:17