A series question whose indices involves greatest integer function












1












$begingroup$


Let $x$ be a real number and $lfloor{x}rfloor$ denote the greatest integer less than or equal to $x$. Let $a$ and $n$ be nonnegative integers such that $ngeq a+1$. Prove that



$$ sum_{k=a}^{n} f(k) - sum_{k=a}^{n} (-1)^{k} f(k) = 2 sum_{k=lfloor{frac{a+2}{2}}rfloor}^{lfloor{frac{n+1}{2}}rfloor} f(2k-1).$$



I proved this by considering the situations where $a$ and $n$ takes even or odd values respectively. Are there any other way to show the equation is true? I generally have trouble with series whose indices involves greatest integer function, are there fast techniques to solve them?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $x$ be a real number and $lfloor{x}rfloor$ denote the greatest integer less than or equal to $x$. Let $a$ and $n$ be nonnegative integers such that $ngeq a+1$. Prove that



    $$ sum_{k=a}^{n} f(k) - sum_{k=a}^{n} (-1)^{k} f(k) = 2 sum_{k=lfloor{frac{a+2}{2}}rfloor}^{lfloor{frac{n+1}{2}}rfloor} f(2k-1).$$



    I proved this by considering the situations where $a$ and $n$ takes even or odd values respectively. Are there any other way to show the equation is true? I generally have trouble with series whose indices involves greatest integer function, are there fast techniques to solve them?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $x$ be a real number and $lfloor{x}rfloor$ denote the greatest integer less than or equal to $x$. Let $a$ and $n$ be nonnegative integers such that $ngeq a+1$. Prove that



      $$ sum_{k=a}^{n} f(k) - sum_{k=a}^{n} (-1)^{k} f(k) = 2 sum_{k=lfloor{frac{a+2}{2}}rfloor}^{lfloor{frac{n+1}{2}}rfloor} f(2k-1).$$



      I proved this by considering the situations where $a$ and $n$ takes even or odd values respectively. Are there any other way to show the equation is true? I generally have trouble with series whose indices involves greatest integer function, are there fast techniques to solve them?










      share|cite|improve this question









      $endgroup$




      Let $x$ be a real number and $lfloor{x}rfloor$ denote the greatest integer less than or equal to $x$. Let $a$ and $n$ be nonnegative integers such that $ngeq a+1$. Prove that



      $$ sum_{k=a}^{n} f(k) - sum_{k=a}^{n} (-1)^{k} f(k) = 2 sum_{k=lfloor{frac{a+2}{2}}rfloor}^{lfloor{frac{n+1}{2}}rfloor} f(2k-1).$$



      I proved this by considering the situations where $a$ and $n$ takes even or odd values respectively. Are there any other way to show the equation is true? I generally have trouble with series whose indices involves greatest integer function, are there fast techniques to solve them?







      sequences-and-series floor-function






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 10:14









      Bright ChancellorBright Chancellor

      241313




      241313






















          1 Answer
          1






          active

          oldest

          votes


















          3





          +50







          $begingroup$

          The index of summation is ranging as
          $$
          a le k le n
          $$



          Replace it with its even and odd components
          $$
          k = 2j - iquad left| {,i = 0,1} right.
          $$



          Then for the even component it shall be
          $$
          eqalign{
          & i = 0quad Rightarrow quad a le 2j le nquad Rightarrow quad leftlceil {{a over 2}} rightrceil le j le leftlfloor {{n over 2}} rightrfloor
          quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor cr}
          $$

          and for the odd
          $$
          eqalign{
          & i = 1quad Rightarrow quad a le 2j - 1 le nquad Rightarrow quad leftlceil {{{a + 1} over 2}} rightrceil le j le
          leftlfloor {{{n + 1} over 2}} rightrfloor quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor cr}
          $$

          Note that for the lower bound we shall employ the ceiling and the floor for the upper. Then we can convert the ceiling to floor.



          The sum over $k$ of $f(k)$ can be split into the sum over the even and the odd component
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {f(k)} = sumlimits_{a, le ,k, le ;n} {left. {f(k),} right|_{,k = 2j} + left. {f(k),} right|_{,k = 2j - 1} } = cr
          & = sumlimits_{a, le ,2j, le ;n} {f(2j)} + sumlimits_{a, le ,2j - 1, le ;n} {f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$

          and same for that of $(-1)^k f(k)$
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {left( { - 1} right)^{,k} f(k)}
          = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {left( { - 1} right)^{,2j} f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {left( { - 1} right)^{,2j - 1} f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          - sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$



          Now, just subtract the two above to confirm the thesis.



          --- addendum ----



          Concerning your request on how to transform ceiling <-> floor, consider that
          $$
          eqalign{
          & n = 2leftlceil {{n over 2}} rightrceil + 2left{ {{n over 2}} right} = 2q + iquad left| matrix{
          ;n,q in Z hfill cr
          ,i = 0,1 hfill cr} right. cr
          & leftlceil {{n over 2}} rightrceil = leftlceil {{{2q + i} over 2}} rightrceil
          = leftlceil {q + {i over 2}} rightrceil = q + leftlceil {{i over 2}} rightrceil = q + i cr
          & leftlfloor {{{n + 1} over 2}} rightrfloor = leftlfloor {{{2q + 1 + i} over 2}} rightrfloor
          = leftlfloor {q + {{1 + i} over 2}} rightrfloor = q + leftlfloor {{{1 + i} over 2}} rightrfloor = q + i cr}
          $$

          and, in general
          $$
          leftlceil {{n over m}} rightrceil = leftlfloor {{{n + m - 1} over m}} rightrfloor quad left| matrix{
          ;n,m in Z hfill cr
          ;1 le m hfill cr} right.
          $$

          re. for details to this article.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How Did you convert the ceiling function to the floor? That is where I stuck actually.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 8:19






          • 1




            $begingroup$
            @BrightChancellor: put an addendum to answer to this
            $endgroup$
            – G Cab
            Jan 31 at 11:16










          • $begingroup$
            I got it, thanks.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 11:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090685%2fa-series-question-whose-indices-involves-greatest-integer-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3





          +50







          $begingroup$

          The index of summation is ranging as
          $$
          a le k le n
          $$



          Replace it with its even and odd components
          $$
          k = 2j - iquad left| {,i = 0,1} right.
          $$



          Then for the even component it shall be
          $$
          eqalign{
          & i = 0quad Rightarrow quad a le 2j le nquad Rightarrow quad leftlceil {{a over 2}} rightrceil le j le leftlfloor {{n over 2}} rightrfloor
          quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor cr}
          $$

          and for the odd
          $$
          eqalign{
          & i = 1quad Rightarrow quad a le 2j - 1 le nquad Rightarrow quad leftlceil {{{a + 1} over 2}} rightrceil le j le
          leftlfloor {{{n + 1} over 2}} rightrfloor quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor cr}
          $$

          Note that for the lower bound we shall employ the ceiling and the floor for the upper. Then we can convert the ceiling to floor.



          The sum over $k$ of $f(k)$ can be split into the sum over the even and the odd component
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {f(k)} = sumlimits_{a, le ,k, le ;n} {left. {f(k),} right|_{,k = 2j} + left. {f(k),} right|_{,k = 2j - 1} } = cr
          & = sumlimits_{a, le ,2j, le ;n} {f(2j)} + sumlimits_{a, le ,2j - 1, le ;n} {f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$

          and same for that of $(-1)^k f(k)$
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {left( { - 1} right)^{,k} f(k)}
          = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {left( { - 1} right)^{,2j} f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {left( { - 1} right)^{,2j - 1} f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          - sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$



          Now, just subtract the two above to confirm the thesis.



          --- addendum ----



          Concerning your request on how to transform ceiling <-> floor, consider that
          $$
          eqalign{
          & n = 2leftlceil {{n over 2}} rightrceil + 2left{ {{n over 2}} right} = 2q + iquad left| matrix{
          ;n,q in Z hfill cr
          ,i = 0,1 hfill cr} right. cr
          & leftlceil {{n over 2}} rightrceil = leftlceil {{{2q + i} over 2}} rightrceil
          = leftlceil {q + {i over 2}} rightrceil = q + leftlceil {{i over 2}} rightrceil = q + i cr
          & leftlfloor {{{n + 1} over 2}} rightrfloor = leftlfloor {{{2q + 1 + i} over 2}} rightrfloor
          = leftlfloor {q + {{1 + i} over 2}} rightrfloor = q + leftlfloor {{{1 + i} over 2}} rightrfloor = q + i cr}
          $$

          and, in general
          $$
          leftlceil {{n over m}} rightrceil = leftlfloor {{{n + m - 1} over m}} rightrfloor quad left| matrix{
          ;n,m in Z hfill cr
          ;1 le m hfill cr} right.
          $$

          re. for details to this article.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How Did you convert the ceiling function to the floor? That is where I stuck actually.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 8:19






          • 1




            $begingroup$
            @BrightChancellor: put an addendum to answer to this
            $endgroup$
            – G Cab
            Jan 31 at 11:16










          • $begingroup$
            I got it, thanks.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 11:22
















          3





          +50







          $begingroup$

          The index of summation is ranging as
          $$
          a le k le n
          $$



          Replace it with its even and odd components
          $$
          k = 2j - iquad left| {,i = 0,1} right.
          $$



          Then for the even component it shall be
          $$
          eqalign{
          & i = 0quad Rightarrow quad a le 2j le nquad Rightarrow quad leftlceil {{a over 2}} rightrceil le j le leftlfloor {{n over 2}} rightrfloor
          quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor cr}
          $$

          and for the odd
          $$
          eqalign{
          & i = 1quad Rightarrow quad a le 2j - 1 le nquad Rightarrow quad leftlceil {{{a + 1} over 2}} rightrceil le j le
          leftlfloor {{{n + 1} over 2}} rightrfloor quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor cr}
          $$

          Note that for the lower bound we shall employ the ceiling and the floor for the upper. Then we can convert the ceiling to floor.



          The sum over $k$ of $f(k)$ can be split into the sum over the even and the odd component
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {f(k)} = sumlimits_{a, le ,k, le ;n} {left. {f(k),} right|_{,k = 2j} + left. {f(k),} right|_{,k = 2j - 1} } = cr
          & = sumlimits_{a, le ,2j, le ;n} {f(2j)} + sumlimits_{a, le ,2j - 1, le ;n} {f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$

          and same for that of $(-1)^k f(k)$
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {left( { - 1} right)^{,k} f(k)}
          = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {left( { - 1} right)^{,2j} f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {left( { - 1} right)^{,2j - 1} f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          - sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$



          Now, just subtract the two above to confirm the thesis.



          --- addendum ----



          Concerning your request on how to transform ceiling <-> floor, consider that
          $$
          eqalign{
          & n = 2leftlceil {{n over 2}} rightrceil + 2left{ {{n over 2}} right} = 2q + iquad left| matrix{
          ;n,q in Z hfill cr
          ,i = 0,1 hfill cr} right. cr
          & leftlceil {{n over 2}} rightrceil = leftlceil {{{2q + i} over 2}} rightrceil
          = leftlceil {q + {i over 2}} rightrceil = q + leftlceil {{i over 2}} rightrceil = q + i cr
          & leftlfloor {{{n + 1} over 2}} rightrfloor = leftlfloor {{{2q + 1 + i} over 2}} rightrfloor
          = leftlfloor {q + {{1 + i} over 2}} rightrfloor = q + leftlfloor {{{1 + i} over 2}} rightrfloor = q + i cr}
          $$

          and, in general
          $$
          leftlceil {{n over m}} rightrceil = leftlfloor {{{n + m - 1} over m}} rightrfloor quad left| matrix{
          ;n,m in Z hfill cr
          ;1 le m hfill cr} right.
          $$

          re. for details to this article.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            How Did you convert the ceiling function to the floor? That is where I stuck actually.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 8:19






          • 1




            $begingroup$
            @BrightChancellor: put an addendum to answer to this
            $endgroup$
            – G Cab
            Jan 31 at 11:16










          • $begingroup$
            I got it, thanks.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 11:22














          3





          +50







          3





          +50



          3




          +50



          $begingroup$

          The index of summation is ranging as
          $$
          a le k le n
          $$



          Replace it with its even and odd components
          $$
          k = 2j - iquad left| {,i = 0,1} right.
          $$



          Then for the even component it shall be
          $$
          eqalign{
          & i = 0quad Rightarrow quad a le 2j le nquad Rightarrow quad leftlceil {{a over 2}} rightrceil le j le leftlfloor {{n over 2}} rightrfloor
          quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor cr}
          $$

          and for the odd
          $$
          eqalign{
          & i = 1quad Rightarrow quad a le 2j - 1 le nquad Rightarrow quad leftlceil {{{a + 1} over 2}} rightrceil le j le
          leftlfloor {{{n + 1} over 2}} rightrfloor quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor cr}
          $$

          Note that for the lower bound we shall employ the ceiling and the floor for the upper. Then we can convert the ceiling to floor.



          The sum over $k$ of $f(k)$ can be split into the sum over the even and the odd component
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {f(k)} = sumlimits_{a, le ,k, le ;n} {left. {f(k),} right|_{,k = 2j} + left. {f(k),} right|_{,k = 2j - 1} } = cr
          & = sumlimits_{a, le ,2j, le ;n} {f(2j)} + sumlimits_{a, le ,2j - 1, le ;n} {f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$

          and same for that of $(-1)^k f(k)$
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {left( { - 1} right)^{,k} f(k)}
          = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {left( { - 1} right)^{,2j} f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {left( { - 1} right)^{,2j - 1} f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          - sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$



          Now, just subtract the two above to confirm the thesis.



          --- addendum ----



          Concerning your request on how to transform ceiling <-> floor, consider that
          $$
          eqalign{
          & n = 2leftlceil {{n over 2}} rightrceil + 2left{ {{n over 2}} right} = 2q + iquad left| matrix{
          ;n,q in Z hfill cr
          ,i = 0,1 hfill cr} right. cr
          & leftlceil {{n over 2}} rightrceil = leftlceil {{{2q + i} over 2}} rightrceil
          = leftlceil {q + {i over 2}} rightrceil = q + leftlceil {{i over 2}} rightrceil = q + i cr
          & leftlfloor {{{n + 1} over 2}} rightrfloor = leftlfloor {{{2q + 1 + i} over 2}} rightrfloor
          = leftlfloor {q + {{1 + i} over 2}} rightrfloor = q + leftlfloor {{{1 + i} over 2}} rightrfloor = q + i cr}
          $$

          and, in general
          $$
          leftlceil {{n over m}} rightrceil = leftlfloor {{{n + m - 1} over m}} rightrfloor quad left| matrix{
          ;n,m in Z hfill cr
          ;1 le m hfill cr} right.
          $$

          re. for details to this article.






          share|cite|improve this answer











          $endgroup$



          The index of summation is ranging as
          $$
          a le k le n
          $$



          Replace it with its even and odd components
          $$
          k = 2j - iquad left| {,i = 0,1} right.
          $$



          Then for the even component it shall be
          $$
          eqalign{
          & i = 0quad Rightarrow quad a le 2j le nquad Rightarrow quad leftlceil {{a over 2}} rightrceil le j le leftlfloor {{n over 2}} rightrfloor
          quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor cr}
          $$

          and for the odd
          $$
          eqalign{
          & i = 1quad Rightarrow quad a le 2j - 1 le nquad Rightarrow quad leftlceil {{{a + 1} over 2}} rightrceil le j le
          leftlfloor {{{n + 1} over 2}} rightrfloor quad Rightarrow cr
          & Rightarrow quad leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor cr}
          $$

          Note that for the lower bound we shall employ the ceiling and the floor for the upper. Then we can convert the ceiling to floor.



          The sum over $k$ of $f(k)$ can be split into the sum over the even and the odd component
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {f(k)} = sumlimits_{a, le ,k, le ;n} {left. {f(k),} right|_{,k = 2j} + left. {f(k),} right|_{,k = 2j - 1} } = cr
          & = sumlimits_{a, le ,2j, le ;n} {f(2j)} + sumlimits_{a, le ,2j - 1, le ;n} {f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$

          and same for that of $(-1)^k f(k)$
          $$
          eqalign{
          & sumlimits_{a, le ,k, le ;n} {left( { - 1} right)^{,k} f(k)}
          = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {left( { - 1} right)^{,2j} f(2j)}
          + sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {left( { - 1} right)^{,2j - 1} f(2j - 1)} = cr
          & = sumlimits_{leftlfloor {{{a + 1} over 2}} rightrfloor le j le leftlfloor {{n over 2}} rightrfloor } {f(2j)}
          - sumlimits_{leftlfloor {{{a + 2} over 2}} rightrfloor le j le leftlfloor {{{n + 1} over 2}} rightrfloor } {f(2j - 1)} cr}
          $$



          Now, just subtract the two above to confirm the thesis.



          --- addendum ----



          Concerning your request on how to transform ceiling <-> floor, consider that
          $$
          eqalign{
          & n = 2leftlceil {{n over 2}} rightrceil + 2left{ {{n over 2}} right} = 2q + iquad left| matrix{
          ;n,q in Z hfill cr
          ,i = 0,1 hfill cr} right. cr
          & leftlceil {{n over 2}} rightrceil = leftlceil {{{2q + i} over 2}} rightrceil
          = leftlceil {q + {i over 2}} rightrceil = q + leftlceil {{i over 2}} rightrceil = q + i cr
          & leftlfloor {{{n + 1} over 2}} rightrfloor = leftlfloor {{{2q + 1 + i} over 2}} rightrfloor
          = leftlfloor {q + {{1 + i} over 2}} rightrfloor = q + leftlfloor {{{1 + i} over 2}} rightrfloor = q + i cr}
          $$

          and, in general
          $$
          leftlceil {{n over m}} rightrceil = leftlfloor {{{n + m - 1} over m}} rightrfloor quad left| matrix{
          ;n,m in Z hfill cr
          ;1 le m hfill cr} right.
          $$

          re. for details to this article.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 31 at 11:10

























          answered Jan 30 at 12:05









          G CabG Cab

          20.4k31341




          20.4k31341












          • $begingroup$
            How Did you convert the ceiling function to the floor? That is where I stuck actually.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 8:19






          • 1




            $begingroup$
            @BrightChancellor: put an addendum to answer to this
            $endgroup$
            – G Cab
            Jan 31 at 11:16










          • $begingroup$
            I got it, thanks.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 11:22


















          • $begingroup$
            How Did you convert the ceiling function to the floor? That is where I stuck actually.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 8:19






          • 1




            $begingroup$
            @BrightChancellor: put an addendum to answer to this
            $endgroup$
            – G Cab
            Jan 31 at 11:16










          • $begingroup$
            I got it, thanks.
            $endgroup$
            – Bright Chancellor
            Jan 31 at 11:22
















          $begingroup$
          How Did you convert the ceiling function to the floor? That is where I stuck actually.
          $endgroup$
          – Bright Chancellor
          Jan 31 at 8:19




          $begingroup$
          How Did you convert the ceiling function to the floor? That is where I stuck actually.
          $endgroup$
          – Bright Chancellor
          Jan 31 at 8:19




          1




          1




          $begingroup$
          @BrightChancellor: put an addendum to answer to this
          $endgroup$
          – G Cab
          Jan 31 at 11:16




          $begingroup$
          @BrightChancellor: put an addendum to answer to this
          $endgroup$
          – G Cab
          Jan 31 at 11:16












          $begingroup$
          I got it, thanks.
          $endgroup$
          – Bright Chancellor
          Jan 31 at 11:22




          $begingroup$
          I got it, thanks.
          $endgroup$
          – Bright Chancellor
          Jan 31 at 11:22


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090685%2fa-series-question-whose-indices-involves-greatest-integer-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith