Evaluate $int_{0}^{1}frac{1+x+x^2}{1+x+x^2+x^3+x^4}dx$
$begingroup$
Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$
My try:
We have:
$$1+x+x^2=frac{1-x^3}{1-x}$$
$$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$
So we get:
$$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$
$$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$
Any idea from here?
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$
My try:
We have:
$$1+x+x^2=frac{1-x^3}{1-x}$$
$$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$
So we get:
$$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$
$$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$
Any idea from here?
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$
My try:
We have:
$$1+x+x^2=frac{1-x^3}{1-x}$$
$$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$
So we get:
$$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$
$$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$
Any idea from here?
integration definite-integrals
$endgroup$
Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$
My try:
We have:
$$1+x+x^2=frac{1-x^3}{1-x}$$
$$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$
So we get:
$$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$
$$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$
Any idea from here?
integration definite-integrals
integration definite-integrals
edited Jan 28 at 14:36
Zacky
7,76511062
7,76511062
asked Jan 28 at 14:23
Umesh shankarUmesh shankar
3,07931220
3,07931220
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Hint:
As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be
$$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$
Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,
$$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.
Now,
$$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$
$endgroup$
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
add a comment |
$begingroup$
This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.
$$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
We have by the series formula of digamma function that:
$$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html
New solution and quite elementary. Let:
$$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
$$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
And by performing partial fractions we get:
$$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
And now there are two simple integrals left and some algebra.
$endgroup$
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
add a comment |
$begingroup$
The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to
$$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$
The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series
$$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$
The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function
$$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$
Thus, we rewrite the original sum as
begin{align}
1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
&=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
&=1+frac15left[picotleft(fracpi5right)-5right]\
&=fracpi5cotleft(fracpi5right)
end{align}
$$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$
$endgroup$
add a comment |
$begingroup$
Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.
$endgroup$
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090916%2fevaluate-int-01-frac1xx21xx2x3x4dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be
$$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$
Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,
$$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.
Now,
$$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$
$endgroup$
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
add a comment |
$begingroup$
Hint:
As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be
$$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$
Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,
$$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.
Now,
$$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$
$endgroup$
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
add a comment |
$begingroup$
Hint:
As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be
$$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$
Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,
$$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.
Now,
$$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$
$endgroup$
Hint:
As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be
$$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$
Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,
$$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.
Now,
$$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$
edited Jan 28 at 15:39
answered Jan 28 at 15:27
Yves DaoustYves Daoust
131k676229
131k676229
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
add a comment |
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
1
1
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
$begingroup$
Excellent solution, i liked it very much
$endgroup$
– Umesh shankar
Jan 29 at 4:50
add a comment |
$begingroup$
This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.
$$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
We have by the series formula of digamma function that:
$$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html
New solution and quite elementary. Let:
$$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
$$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
And by performing partial fractions we get:
$$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
And now there are two simple integrals left and some algebra.
$endgroup$
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
add a comment |
$begingroup$
This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.
$$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
We have by the series formula of digamma function that:
$$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html
New solution and quite elementary. Let:
$$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
$$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
And by performing partial fractions we get:
$$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
And now there are two simple integrals left and some algebra.
$endgroup$
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
add a comment |
$begingroup$
This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.
$$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
We have by the series formula of digamma function that:
$$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html
New solution and quite elementary. Let:
$$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
$$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
And by performing partial fractions we get:
$$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
And now there are two simple integrals left and some algebra.
$endgroup$
This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.
$$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
We have by the series formula of digamma function that:
$$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html
New solution and quite elementary. Let:
$$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
$$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
And by performing partial fractions we get:
$$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
And now there are two simple integrals left and some algebra.
edited Jan 28 at 14:59
answered Jan 28 at 14:34
ZackyZacky
7,76511062
7,76511062
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
add a comment |
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
4
4
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
$begingroup$
Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
$endgroup$
– clathratus
Jan 28 at 16:11
1
1
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
$begingroup$
Elementary method is quite nice for me, thanks
$endgroup$
– Umesh shankar
Jan 29 at 18:49
add a comment |
$begingroup$
The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to
$$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$
The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series
$$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$
The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function
$$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$
Thus, we rewrite the original sum as
begin{align}
1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
&=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
&=1+frac15left[picotleft(fracpi5right)-5right]\
&=fracpi5cotleft(fracpi5right)
end{align}
$$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$
$endgroup$
add a comment |
$begingroup$
The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to
$$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$
The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series
$$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$
The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function
$$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$
Thus, we rewrite the original sum as
begin{align}
1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
&=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
&=1+frac15left[picotleft(fracpi5right)-5right]\
&=fracpi5cotleft(fracpi5right)
end{align}
$$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$
$endgroup$
add a comment |
$begingroup$
The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to
$$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$
The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series
$$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$
The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function
$$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$
Thus, we rewrite the original sum as
begin{align}
1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
&=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
&=1+frac15left[picotleft(fracpi5right)-5right]\
&=fracpi5cotleft(fracpi5right)
end{align}
$$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$
$endgroup$
The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to
$$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$
The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series
$$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$
The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function
$$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$
Thus, we rewrite the original sum as
begin{align}
1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
&=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
&=1+frac15left[picotleft(fracpi5right)-5right]\
&=fracpi5cotleft(fracpi5right)
end{align}
$$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$
edited Jan 28 at 15:07
answered Jan 28 at 14:55
mrtaurhomrtaurho
6,09271641
6,09271641
add a comment |
add a comment |
$begingroup$
Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.
$endgroup$
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
add a comment |
$begingroup$
Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.
$endgroup$
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
add a comment |
$begingroup$
Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.
$endgroup$
Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.
answered Jan 28 at 14:36
UrbanmathsUrbanmaths
714
714
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
add a comment |
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
$begingroup$
Is this an actual solution or just a first thought?
$endgroup$
– mrtaurho
Jan 28 at 15:02
3
3
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
$begingroup$
This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
$endgroup$
– Zacky
Jan 28 at 15:08
2
2
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
$begingroup$
Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
$endgroup$
– Zacky
Jan 28 at 15:14
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090916%2fevaluate-int-01-frac1xx21xx2x3x4dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown