Evaluate $int_{0}^{1}frac{1+x+x^2}{1+x+x^2+x^3+x^4}dx$












7












$begingroup$


Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$



My try:



We have:



$$1+x+x^2=frac{1-x^3}{1-x}$$



$$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$



So we get:



$$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$



$$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$



Any idea from here?










share|cite|improve this question











$endgroup$

















    7












    $begingroup$


    Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$



    My try:



    We have:



    $$1+x+x^2=frac{1-x^3}{1-x}$$



    $$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$



    So we get:



    $$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$



    $$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$



    Any idea from here?










    share|cite|improve this question











    $endgroup$















      7












      7








      7


      5



      $begingroup$


      Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$



      My try:



      We have:



      $$1+x+x^2=frac{1-x^3}{1-x}$$



      $$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$



      So we get:



      $$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$



      $$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$



      Any idea from here?










      share|cite|improve this question











      $endgroup$




      Evaluate $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx$$



      My try:



      We have:



      $$1+x+x^2=frac{1-x^3}{1-x}$$



      $$1+x+x^2+x^3+x^4=frac{1-x^5}{1-x}$$



      So we get:



      $$I=int_{0}^{1}frac{1-x^3}{1-x^5}dx$$



      $$I=1+int_{0}^{1}frac{x^3(x^2-1)}{x^5-1}dx$$



      Any idea from here?







      integration definite-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 28 at 14:36









      Zacky

      7,76511062




      7,76511062










      asked Jan 28 at 14:23









      Umesh shankarUmesh shankar

      3,07931220




      3,07931220






















          4 Answers
          4






          active

          oldest

          votes


















          4












          $begingroup$

          Hint:



          As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be



          $$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$



          Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,



          $$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.



          Now,



          $$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$






          share|cite|improve this answer











          $endgroup$









          • 1




            $begingroup$
            Excellent solution, i liked it very much
            $endgroup$
            – Umesh shankar
            Jan 29 at 4:50



















          9












          $begingroup$

          This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.




          $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
          We have by the series formula of digamma function that:
          $$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html






          New solution and quite elementary. Let:
          $$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
          $$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
          And by performing partial fractions we get:
          $$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
          And now there are two simple integrals left and some algebra.






          share|cite|improve this answer











          $endgroup$









          • 4




            $begingroup$
            Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
            $endgroup$
            – clathratus
            Jan 28 at 16:11






          • 1




            $begingroup$
            Elementary method is quite nice for me, thanks
            $endgroup$
            – Umesh shankar
            Jan 29 at 18:49



















          5












          $begingroup$

          The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to



          $$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
          =sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$



          The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series



          $$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$



          The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function




          $$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$




          Thus, we rewrite the original sum as



          begin{align}
          1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
          &=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
          &=1+frac15left[picotleft(fracpi5right)-5right]\
          &=fracpi5cotleft(fracpi5right)
          end{align}




          $$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$







          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Is this an actual solution or just a first thought?
              $endgroup$
              – mrtaurho
              Jan 28 at 15:02






            • 3




              $begingroup$
              This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
              $endgroup$
              – Zacky
              Jan 28 at 15:08








            • 2




              $begingroup$
              Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
              $endgroup$
              – Zacky
              Jan 28 at 15:14














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090916%2fevaluate-int-01-frac1xx21xx2x3x4dx%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            4 Answers
            4






            active

            oldest

            votes








            4 Answers
            4






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Hint:



            As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be



            $$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$



            Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,



            $$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.



            Now,



            $$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Excellent solution, i liked it very much
              $endgroup$
              – Umesh shankar
              Jan 29 at 4:50
















            4












            $begingroup$

            Hint:



            As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be



            $$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$



            Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,



            $$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.



            Now,



            $$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$






            share|cite|improve this answer











            $endgroup$









            • 1




              $begingroup$
              Excellent solution, i liked it very much
              $endgroup$
              – Umesh shankar
              Jan 29 at 4:50














            4












            4








            4





            $begingroup$

            Hint:



            As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be



            $$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$



            Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,



            $$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.



            Now,



            $$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$






            share|cite|improve this answer











            $endgroup$



            Hint:



            As the roots of the denominator are the complex fifth roots of unity, you find the factorization to be



            $$1+x+x^2+x^3+x^4=left(x^2+frac{1+sqrt5}2x+1right)left(x^2+frac{1-sqrt5}2x+1right).$$



            Then we can find a linear combination to obtain a quadratic polynomial with equal coefficients,



            $$left(sqrt5+1right)left(x^2+frac{1-sqrt5}2x+1right)+left(sqrt5-1right)left(x^2+frac{1+sqrt5}2x+1right)=2sqrt5(x^2+x+1)$$ which leads us to the decomposition in simple fractions.



            Now,



            $$int_0^1frac{dx}{x^2+2ax+1}=int_0^1frac{dx}{(x+a)^2+1-a^2}=left.frac1{sqrt{1-a^2}}arctanfrac{x+a}{sqrt{1-a^2}}right|_0^1.$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 28 at 15:39

























            answered Jan 28 at 15:27









            Yves DaoustYves Daoust

            131k676229




            131k676229








            • 1




              $begingroup$
              Excellent solution, i liked it very much
              $endgroup$
              – Umesh shankar
              Jan 29 at 4:50














            • 1




              $begingroup$
              Excellent solution, i liked it very much
              $endgroup$
              – Umesh shankar
              Jan 29 at 4:50








            1




            1




            $begingroup$
            Excellent solution, i liked it very much
            $endgroup$
            – Umesh shankar
            Jan 29 at 4:50




            $begingroup$
            Excellent solution, i liked it very much
            $endgroup$
            – Umesh shankar
            Jan 29 at 4:50











            9












            $begingroup$

            This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.




            $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
            We have by the series formula of digamma function that:
            $$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html






            New solution and quite elementary. Let:
            $$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
            $$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
            And by performing partial fractions we get:
            $$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
            And now there are two simple integrals left and some algebra.






            share|cite|improve this answer











            $endgroup$









            • 4




              $begingroup$
              Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
              $endgroup$
              – clathratus
              Jan 28 at 16:11






            • 1




              $begingroup$
              Elementary method is quite nice for me, thanks
              $endgroup$
              – Umesh shankar
              Jan 29 at 18:49
















            9












            $begingroup$

            This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.




            $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
            We have by the series formula of digamma function that:
            $$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html






            New solution and quite elementary. Let:
            $$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
            $$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
            And by performing partial fractions we get:
            $$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
            And now there are two simple integrals left and some algebra.






            share|cite|improve this answer











            $endgroup$









            • 4




              $begingroup$
              Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
              $endgroup$
              – clathratus
              Jan 28 at 16:11






            • 1




              $begingroup$
              Elementary method is quite nice for me, thanks
              $endgroup$
              – Umesh shankar
              Jan 29 at 18:49














            9












            9








            9





            $begingroup$

            This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.




            $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
            We have by the series formula of digamma function that:
            $$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html






            New solution and quite elementary. Let:
            $$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
            $$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
            And by performing partial fractions we get:
            $$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
            And now there are two simple integrals left and some algebra.






            share|cite|improve this answer











            $endgroup$



            This integral appeared on AoPS a while ago, it might be that it was on MSE too. Anyway I will quote what I did on AoPS.




            $$I=int_{0}^{1}frac{(1+x+x^2)}{1+x+x^2+x^3+x^4}dx=int_0^1 frac{1-x^3 }{1-x^5}dx$$ Recall the geometric series: $displaystyle{frac{1}{1-x^z}=sum_{n=0}^infty x^{nz}, , |x|<1 } $. Applying it here: $$I=int_0^1 (1-x^3) left(sum_{n=0}^infty x^{5n}right)dx=sum_{n=0}^infty int_0^1 left(x^{5n}-x^{5n+3}right)dx$$ I don't know how to show that we can swap the sum and the integral here. $$I=left(frac{x^{5n+1}} {5n+1} - frac{x^{5n+4}} {5n+4}right) bigg|_0^1 =sum_{n=0}^inftyleft(frac{1} {5n+1} - frac{1 } {5n+4}right) =frac15 sum_{n=0}^inftyleft(frac{1} {n+frac15} - frac{1 } {n+frac45}right) $$
            We have by the series formula of digamma function that:
            $$psi(z)-psi(s)=left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{z+n}right)-left(-gamma-1+sum_{n=1}^inftyfrac{1}{n}-frac{1}{s+n}right)=sum_{n=1}^inftyleft(frac{1}{s+n}-frac{1}{z+n}right) $$ So $displaystyle{ I=frac15left(psileft(frac45right) - psileft(frac15right)right) } $. Also using the reflection formula:$$psi(1-z)-psi(z)=picot(pi z)$$ We have: $$I=frac{pi} {5}cotleft(frac{pi}{5}right)=frac{pi} {5}sqrt{1 +frac{2} {sqrt 5}}$$ see also: https://en.m.wikipedia.org/wiki/Digamma_function and http://mathworld.wolfram.com/TrigonometryAnglesPi5.html






            New solution and quite elementary. Let:
            $$x=frac{1-t}{1+t}rightarrow dx=-frac{2}{(1+t)^2}dt$$
            $$Rightarrow I=2int_0^1 frac{x^2+3}{x^4+10x^2+5}dx$$
            And by performing partial fractions we get:
            $$I=frac{sqrt 5+1}{sqrt 5}int_0^1 frac{dx}{x^2+2sqrt 5+5}+frac{sqrt 5-1}{sqrt 5}int_0^1 frac{dx}{x^2-2sqrt 5+5}$$
            And now there are two simple integrals left and some algebra.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 28 at 14:59

























            answered Jan 28 at 14:34









            ZackyZacky

            7,76511062




            7,76511062








            • 4




              $begingroup$
              Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
              $endgroup$
              – clathratus
              Jan 28 at 16:11






            • 1




              $begingroup$
              Elementary method is quite nice for me, thanks
              $endgroup$
              – Umesh shankar
              Jan 29 at 18:49














            • 4




              $begingroup$
              Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
              $endgroup$
              – clathratus
              Jan 28 at 16:11






            • 1




              $begingroup$
              Elementary method is quite nice for me, thanks
              $endgroup$
              – Umesh shankar
              Jan 29 at 18:49








            4




            4




            $begingroup$
            Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
            $endgroup$
            – clathratus
            Jan 28 at 16:11




            $begingroup$
            Really neat use of $$cotfracpi5=sqrt{1+frac2{sqrt5}}$$
            $endgroup$
            – clathratus
            Jan 28 at 16:11




            1




            1




            $begingroup$
            Elementary method is quite nice for me, thanks
            $endgroup$
            – Umesh shankar
            Jan 29 at 18:49




            $begingroup$
            Elementary method is quite nice for me, thanks
            $endgroup$
            – Umesh shankar
            Jan 29 at 18:49











            5












            $begingroup$

            The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to



            $$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
            =sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$



            The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series



            $$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$



            The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function




            $$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$




            Thus, we rewrite the original sum as



            begin{align}
            1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
            &=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
            &=1+frac15left[picotleft(fracpi5right)-5right]\
            &=fracpi5cotleft(fracpi5right)
            end{align}




            $$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$







            share|cite|improve this answer











            $endgroup$


















              5












              $begingroup$

              The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to



              $$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
              =sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$



              The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series



              $$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$



              The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function




              $$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$




              Thus, we rewrite the original sum as



              begin{align}
              1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
              &=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
              &=1+frac15left[picotleft(fracpi5right)-5right]\
              &=fracpi5cotleft(fracpi5right)
              end{align}




              $$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$







              share|cite|improve this answer











              $endgroup$
















                5












                5








                5





                $begingroup$

                The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to



                $$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
                =sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$



                The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series



                $$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$



                The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function




                $$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$




                Thus, we rewrite the original sum as



                begin{align}
                1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
                &=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
                &=1+frac15left[picotleft(fracpi5right)-5right]\
                &=fracpi5cotleft(fracpi5right)
                end{align}




                $$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$







                share|cite|improve this answer











                $endgroup$



                The reduced form you gave in the end is a good starting point. Since we are within the interval $[0,1]$ we may expand the denominator as its corresponding geometric series, followed by changing the order of summation and integration and finally by termwise integration. Overall this leads us to



                $$I=int_0^1frac{1-x^3}{1-x^5}mathrm dx=int_0^1sum_{n=0}^infty x^{5n}(1-x^3)mathrm dx=sum_{n=0}^inftyint_0^1x^{5n}-x^{5n+3}mathrm dx\=sum_{n=0}^inftyleft[frac{x^{5n+1}}{5n+1}-frac{x^{5n+4}}{5n+4}right]_0^1
                =sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]$$



                The difficult task is to find a closed-form for this sum. Of course, one could invoke the Digamma Function as Zacky quoted, but we can also note the following due the absolute convergence of the series



                $$I=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=1-frac14+frac16-frac19+cdots=1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]$$



                The latter sum falls down quite easy by considering a well-known series expansion of the cotangent function




                $$picot(pi z)~=~frac1z+sum_{n=1}^{infty}frac{2z}{z^2-n^2} $$




                Thus, we rewrite the original sum as



                begin{align}
                1+sum_{n=1}^inftyleft[frac{1}{5n+1}-frac{1}{5n-1}right]&=1-sum_{n=1}^inftyfrac2{25n^2-1}\
                &=1+frac15left[sum_{n=1}^inftyfrac{2frac15}{left(frac15right)^2-n^2}right]\
                &=1+frac15left[picotleft(fracpi5right)-5right]\
                &=fracpi5cotleft(fracpi5right)
                end{align}




                $$therefore~I=int_0^1frac{1+x+x^2}{1+x+x^2+x^3+x^4}mathrm dx=sum_{n=0}^inftyleft[frac{1}{5n+1}-frac{1}{5n+4}right]=fracpi5sqrt{1+frac2{sqrt 5}}$$








                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 28 at 15:07

























                answered Jan 28 at 14:55









                mrtaurhomrtaurho

                6,09271641




                6,09271641























                    1












                    $begingroup$

                    Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Is this an actual solution or just a first thought?
                      $endgroup$
                      – mrtaurho
                      Jan 28 at 15:02






                    • 3




                      $begingroup$
                      This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:08








                    • 2




                      $begingroup$
                      Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:14


















                    1












                    $begingroup$

                    Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      Is this an actual solution or just a first thought?
                      $endgroup$
                      – mrtaurho
                      Jan 28 at 15:02






                    • 3




                      $begingroup$
                      This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:08








                    • 2




                      $begingroup$
                      Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:14
















                    1












                    1








                    1





                    $begingroup$

                    Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.






                    share|cite|improve this answer









                    $endgroup$



                    Your integral $$ int_{0}^{1}frac{1-x^3}{1-x^5}dx$$ is similar to that of the digamma function $$-gamma+int_{0}^{1}frac{1-t^s}{1-t}dt=psi(s + 1) $$Maybe the change of variable $t=x^5$ could be helpful.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 28 at 14:36









                    UrbanmathsUrbanmaths

                    714




                    714












                    • $begingroup$
                      Is this an actual solution or just a first thought?
                      $endgroup$
                      – mrtaurho
                      Jan 28 at 15:02






                    • 3




                      $begingroup$
                      This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:08








                    • 2




                      $begingroup$
                      Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:14




















                    • $begingroup$
                      Is this an actual solution or just a first thought?
                      $endgroup$
                      – mrtaurho
                      Jan 28 at 15:02






                    • 3




                      $begingroup$
                      This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:08








                    • 2




                      $begingroup$
                      Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                      $endgroup$
                      – Zacky
                      Jan 28 at 15:14


















                    $begingroup$
                    Is this an actual solution or just a first thought?
                    $endgroup$
                    – mrtaurho
                    Jan 28 at 15:02




                    $begingroup$
                    Is this an actual solution or just a first thought?
                    $endgroup$
                    – mrtaurho
                    Jan 28 at 15:02




                    3




                    3




                    $begingroup$
                    This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                    $endgroup$
                    – Zacky
                    Jan 28 at 15:08






                    $begingroup$
                    This might work indeed, but not that simple. By letting $x^5=t$ we get: $$I=int_0^1 frac{1-x^3}{1-x^5}dx=frac15int_0^1 frac{1-t^{3/5}}{1-t} t^{-4/5}dt$$ Now we need to do a cute trick, add $0 (1-1)$ in the numerator and split into two integrals as: $$I=frac15int_0^1 frac{1-t^{-4/5}cdot t^{3/5}}{1-t}dt-frac15int_0^1 frac{1-t^{-4/5}}{1-t}dt $$ And now apply that definition, $gamma$ gets canceled out of course.
                    $endgroup$
                    – Zacky
                    Jan 28 at 15:08






                    2




                    2




                    $begingroup$
                    Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                    $endgroup$
                    – Zacky
                    Jan 28 at 15:14






                    $begingroup$
                    Of course there is no surprise that it works, and that we have a difference of digamma functions looking at other answers.
                    $endgroup$
                    – Zacky
                    Jan 28 at 15:14




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090916%2fevaluate-int-01-frac1xx21xx2x3x4dx%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]