Primes from the sum of the first n repunits $1+11+111+1111+11111+…$
$begingroup$
Is there prime number of the form $1+11+111+1111+11111+...$. I've checked it up to first 2000 repunits, but i found none. If $R_1=1$, $R_2=1+11$, $R_3=1+11+111$, $R_n=1+11+111+...+$nth repunit. What is the smallest n such that $R_n$ is prime ?
prime-numbers
$endgroup$
migrated from mathematica.stackexchange.com Jan 28 at 13:49
This question came from our site for users of Wolfram Mathematica.
add a comment |
$begingroup$
Is there prime number of the form $1+11+111+1111+11111+...$. I've checked it up to first 2000 repunits, but i found none. If $R_1=1$, $R_2=1+11$, $R_3=1+11+111$, $R_n=1+11+111+...+$nth repunit. What is the smallest n such that $R_n$ is prime ?
prime-numbers
$endgroup$
migrated from mathematica.stackexchange.com Jan 28 at 13:49
This question came from our site for users of Wolfram Mathematica.
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
1
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54
add a comment |
$begingroup$
Is there prime number of the form $1+11+111+1111+11111+...$. I've checked it up to first 2000 repunits, but i found none. If $R_1=1$, $R_2=1+11$, $R_3=1+11+111$, $R_n=1+11+111+...+$nth repunit. What is the smallest n such that $R_n$ is prime ?
prime-numbers
$endgroup$
Is there prime number of the form $1+11+111+1111+11111+...$. I've checked it up to first 2000 repunits, but i found none. If $R_1=1$, $R_2=1+11$, $R_3=1+11+111$, $R_n=1+11+111+...+$nth repunit. What is the smallest n such that $R_n$ is prime ?
prime-numbers
prime-numbers
asked Jan 28 at 5:31
Armando T
migrated from mathematica.stackexchange.com Jan 28 at 13:49
This question came from our site for users of Wolfram Mathematica.
migrated from mathematica.stackexchange.com Jan 28 at 13:49
This question came from our site for users of Wolfram Mathematica.
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
1
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54
add a comment |
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
1
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
1
1
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here's the smallest such prime, found using this code:
Select[Accumulate[Table[
Sum[10^i, {i, 0, n}],
{n, 0, 10000}]], PrimeQ]
$$1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
34567901234567901234567901234567901234567900957$$
$endgroup$
add a comment |
$begingroup$
The first one is at $n=2497$, you just missed it!
Do[If[PrimeQ[(10^(n+1)-9n-10)/81], Print[n]], {n, 10^4}]
(* 2497 *)
(* 3301 *)
...
The direct formula for the $n^{text{th}}$ term is from
Sum[10^j, {i, 0, n - 1}, {j, 0, i}]
(* 1/81 (-10 + 10^(1 + n) - 9 n) *)
$endgroup$
add a comment |
$begingroup$
To give some more examples of solutions, using Roman's direct formula for conciseness (alternately you can do something like r = 10*r+1; N += r
in the loop).
Pari/GP (test is AES BPSW):
? for(n=1,6000,ispseudoprime((10^(n+1)-9*n-10)/81) && print(n))
2497
3301
time = 2min, 5,916 ms.
Perl/ntheory (v0.74) (test is ES BPSW):
$ time perl -Mntheory=:all -E 'is_prob_prime(divint(powint(10,$_+1)-9*$_-10,81)) and say for 1..6000;'
2497
3301
real 0m44.473s
PFGW (test is base 3 Fermat):
$ echo -e "ABC2 (10^($a+1)-9*$a-10)/81na: from 1 to 6000" > repsum.txt
$ time ./pfgw64 -k -u0 -f50 repsum.txt
(10^(2497+1)-9*2497-10)/81 is 3-PRP! (0.0793s+0.0362s)
(10^(3301+1)-9*3301-10)/81 is 3-PRP! (0.1333s+0.0615s)
real 0m42.963s
As the size gets larger, PFGW will get much faster relative to the others. E.g. times on Macbook Pro (2015) for checking n from 6001 to 7000 the times are 88.9s for Pari/GP, 26.0s for Perl/ntheory, and 13.4s for PFGW. Albeit for any discovered values we'd want to run another more strict test such as BPSW.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090879%2fprimes-from-the-sum-of-the-first-n-repunits-111111111111111%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's the smallest such prime, found using this code:
Select[Accumulate[Table[
Sum[10^i, {i, 0, n}],
{n, 0, 10000}]], PrimeQ]
$$1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
34567901234567901234567901234567901234567900957$$
$endgroup$
add a comment |
$begingroup$
Here's the smallest such prime, found using this code:
Select[Accumulate[Table[
Sum[10^i, {i, 0, n}],
{n, 0, 10000}]], PrimeQ]
$$1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
34567901234567901234567901234567901234567900957$$
$endgroup$
add a comment |
$begingroup$
Here's the smallest such prime, found using this code:
Select[Accumulate[Table[
Sum[10^i, {i, 0, n}],
{n, 0, 10000}]], PrimeQ]
$$1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
34567901234567901234567901234567901234567900957$$
$endgroup$
Here's the smallest such prime, found using this code:
Select[Accumulate[Table[
Sum[10^i, {i, 0, n}],
{n, 0, 10000}]], PrimeQ]
$$1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
3456790123456790123456790123456790123456790123456790123456790123456790
1234567901234567901234567901234567901234567901234567901234567901234567
9012345679012345679012345679012345679012345679012345679012345679012345
6790123456790123456790123456790123456790123456790123456790123456790123
4567901234567901234567901234567901234567901234567901234567901234567901
2345679012345679012345679012345679012345679012345679012345679012345679
0123456790123456790123456790123456790123456790123456790123456790123456
7901234567901234567901234567901234567901234567901234567901234567901234
5679012345679012345679012345679012345679012345679012345679012345679012
34567901234567901234567901234567901234567900957$$
answered Jan 28 at 6:47
David G. StorkDavid G. Stork
11.5k41533
11.5k41533
add a comment |
add a comment |
$begingroup$
The first one is at $n=2497$, you just missed it!
Do[If[PrimeQ[(10^(n+1)-9n-10)/81], Print[n]], {n, 10^4}]
(* 2497 *)
(* 3301 *)
...
The direct formula for the $n^{text{th}}$ term is from
Sum[10^j, {i, 0, n - 1}, {j, 0, i}]
(* 1/81 (-10 + 10^(1 + n) - 9 n) *)
$endgroup$
add a comment |
$begingroup$
The first one is at $n=2497$, you just missed it!
Do[If[PrimeQ[(10^(n+1)-9n-10)/81], Print[n]], {n, 10^4}]
(* 2497 *)
(* 3301 *)
...
The direct formula for the $n^{text{th}}$ term is from
Sum[10^j, {i, 0, n - 1}, {j, 0, i}]
(* 1/81 (-10 + 10^(1 + n) - 9 n) *)
$endgroup$
add a comment |
$begingroup$
The first one is at $n=2497$, you just missed it!
Do[If[PrimeQ[(10^(n+1)-9n-10)/81], Print[n]], {n, 10^4}]
(* 2497 *)
(* 3301 *)
...
The direct formula for the $n^{text{th}}$ term is from
Sum[10^j, {i, 0, n - 1}, {j, 0, i}]
(* 1/81 (-10 + 10^(1 + n) - 9 n) *)
$endgroup$
The first one is at $n=2497$, you just missed it!
Do[If[PrimeQ[(10^(n+1)-9n-10)/81], Print[n]], {n, 10^4}]
(* 2497 *)
(* 3301 *)
...
The direct formula for the $n^{text{th}}$ term is from
Sum[10^j, {i, 0, n - 1}, {j, 0, i}]
(* 1/81 (-10 + 10^(1 + n) - 9 n) *)
answered Jan 28 at 8:01
RomanRoman
2188
2188
add a comment |
add a comment |
$begingroup$
To give some more examples of solutions, using Roman's direct formula for conciseness (alternately you can do something like r = 10*r+1; N += r
in the loop).
Pari/GP (test is AES BPSW):
? for(n=1,6000,ispseudoprime((10^(n+1)-9*n-10)/81) && print(n))
2497
3301
time = 2min, 5,916 ms.
Perl/ntheory (v0.74) (test is ES BPSW):
$ time perl -Mntheory=:all -E 'is_prob_prime(divint(powint(10,$_+1)-9*$_-10,81)) and say for 1..6000;'
2497
3301
real 0m44.473s
PFGW (test is base 3 Fermat):
$ echo -e "ABC2 (10^($a+1)-9*$a-10)/81na: from 1 to 6000" > repsum.txt
$ time ./pfgw64 -k -u0 -f50 repsum.txt
(10^(2497+1)-9*2497-10)/81 is 3-PRP! (0.0793s+0.0362s)
(10^(3301+1)-9*3301-10)/81 is 3-PRP! (0.1333s+0.0615s)
real 0m42.963s
As the size gets larger, PFGW will get much faster relative to the others. E.g. times on Macbook Pro (2015) for checking n from 6001 to 7000 the times are 88.9s for Pari/GP, 26.0s for Perl/ntheory, and 13.4s for PFGW. Albeit for any discovered values we'd want to run another more strict test such as BPSW.
$endgroup$
add a comment |
$begingroup$
To give some more examples of solutions, using Roman's direct formula for conciseness (alternately you can do something like r = 10*r+1; N += r
in the loop).
Pari/GP (test is AES BPSW):
? for(n=1,6000,ispseudoprime((10^(n+1)-9*n-10)/81) && print(n))
2497
3301
time = 2min, 5,916 ms.
Perl/ntheory (v0.74) (test is ES BPSW):
$ time perl -Mntheory=:all -E 'is_prob_prime(divint(powint(10,$_+1)-9*$_-10,81)) and say for 1..6000;'
2497
3301
real 0m44.473s
PFGW (test is base 3 Fermat):
$ echo -e "ABC2 (10^($a+1)-9*$a-10)/81na: from 1 to 6000" > repsum.txt
$ time ./pfgw64 -k -u0 -f50 repsum.txt
(10^(2497+1)-9*2497-10)/81 is 3-PRP! (0.0793s+0.0362s)
(10^(3301+1)-9*3301-10)/81 is 3-PRP! (0.1333s+0.0615s)
real 0m42.963s
As the size gets larger, PFGW will get much faster relative to the others. E.g. times on Macbook Pro (2015) for checking n from 6001 to 7000 the times are 88.9s for Pari/GP, 26.0s for Perl/ntheory, and 13.4s for PFGW. Albeit for any discovered values we'd want to run another more strict test such as BPSW.
$endgroup$
add a comment |
$begingroup$
To give some more examples of solutions, using Roman's direct formula for conciseness (alternately you can do something like r = 10*r+1; N += r
in the loop).
Pari/GP (test is AES BPSW):
? for(n=1,6000,ispseudoprime((10^(n+1)-9*n-10)/81) && print(n))
2497
3301
time = 2min, 5,916 ms.
Perl/ntheory (v0.74) (test is ES BPSW):
$ time perl -Mntheory=:all -E 'is_prob_prime(divint(powint(10,$_+1)-9*$_-10,81)) and say for 1..6000;'
2497
3301
real 0m44.473s
PFGW (test is base 3 Fermat):
$ echo -e "ABC2 (10^($a+1)-9*$a-10)/81na: from 1 to 6000" > repsum.txt
$ time ./pfgw64 -k -u0 -f50 repsum.txt
(10^(2497+1)-9*2497-10)/81 is 3-PRP! (0.0793s+0.0362s)
(10^(3301+1)-9*3301-10)/81 is 3-PRP! (0.1333s+0.0615s)
real 0m42.963s
As the size gets larger, PFGW will get much faster relative to the others. E.g. times on Macbook Pro (2015) for checking n from 6001 to 7000 the times are 88.9s for Pari/GP, 26.0s for Perl/ntheory, and 13.4s for PFGW. Albeit for any discovered values we'd want to run another more strict test such as BPSW.
$endgroup$
To give some more examples of solutions, using Roman's direct formula for conciseness (alternately you can do something like r = 10*r+1; N += r
in the loop).
Pari/GP (test is AES BPSW):
? for(n=1,6000,ispseudoprime((10^(n+1)-9*n-10)/81) && print(n))
2497
3301
time = 2min, 5,916 ms.
Perl/ntheory (v0.74) (test is ES BPSW):
$ time perl -Mntheory=:all -E 'is_prob_prime(divint(powint(10,$_+1)-9*$_-10,81)) and say for 1..6000;'
2497
3301
real 0m44.473s
PFGW (test is base 3 Fermat):
$ echo -e "ABC2 (10^($a+1)-9*$a-10)/81na: from 1 to 6000" > repsum.txt
$ time ./pfgw64 -k -u0 -f50 repsum.txt
(10^(2497+1)-9*2497-10)/81 is 3-PRP! (0.0793s+0.0362s)
(10^(3301+1)-9*3301-10)/81 is 3-PRP! (0.1333s+0.0615s)
real 0m42.963s
As the size gets larger, PFGW will get much faster relative to the others. E.g. times on Macbook Pro (2015) for checking n from 6001 to 7000 the times are 88.9s for Pari/GP, 26.0s for Perl/ntheory, and 13.4s for PFGW. Albeit for any discovered values we'd want to run another more strict test such as BPSW.
answered Jan 30 at 0:32
DanaJDanaJ
2,44211017
2,44211017
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090879%2fprimes-from-the-sum-of-the-first-n-repunits-111111111111111%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Welcome to Mathematica.SE. Are you sure you are posting on the right site? There is nothing in your question making it clear that it is concerned with Mathematica software.
$endgroup$
– m_goldberg
Jan 28 at 6:11
$begingroup$
Msc is for mathematic right?
$endgroup$
– Armando T
Jan 28 at 6:20
$begingroup$
Mathematics and Mathematica stack exchange is different?
$endgroup$
– Armando T
Jan 28 at 6:24
1
$begingroup$
Mathematica.stackexchange.com is concerned with the computing software Mathematica from Wolfram Research. Math.stackexchange.com is concerned with pure mathematics.
$endgroup$
– MassDefect
Jan 28 at 6:54