Evaluate $sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $
$begingroup$
$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$
Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.
I don't understand where this hint comes from and how it helps us solve the series.
calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$
Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.
I don't understand where this hint comes from and how it helps us solve the series.
calculus sequences-and-series limits
$endgroup$
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31
add a comment |
$begingroup$
$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$
Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.
I don't understand where this hint comes from and how it helps us solve the series.
calculus sequences-and-series limits
$endgroup$
$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$
Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.
I don't understand where this hint comes from and how it helps us solve the series.
calculus sequences-and-series limits
calculus sequences-and-series limits
asked Jan 28 at 14:19
SADBOYSSADBOYS
51119
51119
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31
add a comment |
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.
Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as
$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$
Using $(1)$, we see that
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$
Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals
$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$
Substitution of $(3)$ into $(2)$ yields
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$
Finally, using the limit definition of the Euler-Mascheroni constant
$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$
we arrive at the coveted limit
$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$
$endgroup$
add a comment |
$begingroup$
Here is another method using analytic regularization.
We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
$$
eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
$$
where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
$$
zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
$$
where the second line now converges for $0<s<2$ and hence
$$
eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
$$
Deriving with respect to $s$ and setting $s=1$
$$
eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
=-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
$$
we have
$$
coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
$$
When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
$$
-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N frac{1}{k} \
= log(2) left{ log(N) + gamma + {cal O}(1/N) right}
$$
and therefore
$$
eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090911%2fevaluate-sum-limits-n-1-infty-1n-frac-lnnn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.
Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as
$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$
Using $(1)$, we see that
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$
Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals
$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$
Substitution of $(3)$ into $(2)$ yields
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$
Finally, using the limit definition of the Euler-Mascheroni constant
$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$
we arrive at the coveted limit
$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$
$endgroup$
add a comment |
$begingroup$
I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.
Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as
$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$
Using $(1)$, we see that
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$
Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals
$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$
Substitution of $(3)$ into $(2)$ yields
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$
Finally, using the limit definition of the Euler-Mascheroni constant
$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$
we arrive at the coveted limit
$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$
$endgroup$
add a comment |
$begingroup$
I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.
Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as
$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$
Using $(1)$, we see that
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$
Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals
$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$
Substitution of $(3)$ into $(2)$ yields
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$
Finally, using the limit definition of the Euler-Mascheroni constant
$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$
we arrive at the coveted limit
$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$
$endgroup$
I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.
Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as
$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$
Using $(1)$, we see that
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$
Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals
$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$
Substitution of $(3)$ into $(2)$ yields
$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$
Finally, using the limit definition of the Euler-Mascheroni constant
$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$
we arrive at the coveted limit
$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$
edited Jan 28 at 16:38
answered Jan 28 at 16:24
Mark ViolaMark Viola
134k1278176
134k1278176
add a comment |
add a comment |
$begingroup$
Here is another method using analytic regularization.
We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
$$
eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
$$
where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
$$
zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
$$
where the second line now converges for $0<s<2$ and hence
$$
eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
$$
Deriving with respect to $s$ and setting $s=1$
$$
eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
=-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
$$
we have
$$
coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
$$
When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
$$
-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N frac{1}{k} \
= log(2) left{ log(N) + gamma + {cal O}(1/N) right}
$$
and therefore
$$
eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
$$
$endgroup$
add a comment |
$begingroup$
Here is another method using analytic regularization.
We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
$$
eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
$$
where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
$$
zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
$$
where the second line now converges for $0<s<2$ and hence
$$
eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
$$
Deriving with respect to $s$ and setting $s=1$
$$
eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
=-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
$$
we have
$$
coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
$$
When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
$$
-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N frac{1}{k} \
= log(2) left{ log(N) + gamma + {cal O}(1/N) right}
$$
and therefore
$$
eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
$$
$endgroup$
add a comment |
$begingroup$
Here is another method using analytic regularization.
We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
$$
eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
$$
where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
$$
zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
$$
where the second line now converges for $0<s<2$ and hence
$$
eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
$$
Deriving with respect to $s$ and setting $s=1$
$$
eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
=-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
$$
we have
$$
coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
$$
When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
$$
-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N frac{1}{k} \
= log(2) left{ log(N) + gamma + {cal O}(1/N) right}
$$
and therefore
$$
eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
$$
$endgroup$
Here is another method using analytic regularization.
We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
$$
eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
$$
where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
$$
zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
$$
where the second line now converges for $0<s<2$ and hence
$$
eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
$$
Deriving with respect to $s$ and setting $s=1$
$$
eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
=-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
$$
we have
$$
coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
$$
When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
$$
-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
=log(2) sum_{k=1}^N frac{1}{k} \
= log(2) left{ log(N) + gamma + {cal O}(1/N) right}
$$
and therefore
$$
eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
$$
edited Jan 28 at 22:28
answered Jan 28 at 22:22
DigerDiger
1,8101514
1,8101514
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090911%2fevaluate-sum-limits-n-1-infty-1n-frac-lnnn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01
$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27
$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36
$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31