Evaluate $sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $












1












$begingroup$


$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$



Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.



I don't understand where this hint comes from and how it helps us solve the series.










share|cite|improve this question









$endgroup$












  • $begingroup$
    How did you solve it? Using $eta'(1)$?
    $endgroup$
    – Diger
    Jan 28 at 15:01












  • $begingroup$
    @Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
    $endgroup$
    – Mark Viola
    Jan 28 at 16:27










  • $begingroup$
    @SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
    $endgroup$
    – Mark Viola
    Jan 28 at 16:36












  • $begingroup$
    @Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
    $endgroup$
    – Diger
    Jan 28 at 17:31


















1












$begingroup$


$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$



Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.



I don't understand where this hint comes from and how it helps us solve the series.










share|cite|improve this question









$endgroup$












  • $begingroup$
    How did you solve it? Using $eta'(1)$?
    $endgroup$
    – Diger
    Jan 28 at 15:01












  • $begingroup$
    @Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
    $endgroup$
    – Mark Viola
    Jan 28 at 16:27










  • $begingroup$
    @SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
    $endgroup$
    – Mark Viola
    Jan 28 at 16:36












  • $begingroup$
    @Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
    $endgroup$
    – Diger
    Jan 28 at 17:31
















1












1








1


2



$begingroup$


$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$



Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.



I don't understand where this hint comes from and how it helps us solve the series.










share|cite|improve this question









$endgroup$




$$sumlimits_{n=1}^{infty} (-1)^n frac{ln{n}}{n} $$



Hint : $$ x_n = frac{ln{2}}{2} + frac{ln{3}}{3} + cdots frac{ln{n}}{n} - frac{ln^2{2}}{2} $$
Which converges, if we calculate it's limit we should get $ln2(gamma-frac{ln{2}}{2})$.



I don't understand where this hint comes from and how it helps us solve the series.







calculus sequences-and-series limits






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 28 at 14:19









SADBOYSSADBOYS

51119




51119












  • $begingroup$
    How did you solve it? Using $eta'(1)$?
    $endgroup$
    – Diger
    Jan 28 at 15:01












  • $begingroup$
    @Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
    $endgroup$
    – Mark Viola
    Jan 28 at 16:27










  • $begingroup$
    @SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
    $endgroup$
    – Mark Viola
    Jan 28 at 16:36












  • $begingroup$
    @Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
    $endgroup$
    – Diger
    Jan 28 at 17:31




















  • $begingroup$
    How did you solve it? Using $eta'(1)$?
    $endgroup$
    – Diger
    Jan 28 at 15:01












  • $begingroup$
    @Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
    $endgroup$
    – Mark Viola
    Jan 28 at 16:27










  • $begingroup$
    @SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
    $endgroup$
    – Mark Viola
    Jan 28 at 16:36












  • $begingroup$
    @Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
    $endgroup$
    – Diger
    Jan 28 at 17:31


















$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01






$begingroup$
How did you solve it? Using $eta'(1)$?
$endgroup$
– Diger
Jan 28 at 15:01














$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27




$begingroup$
@Diger See my development of $eta'(1)$ using only the Euler-Maclaurin Summation Formula.
$endgroup$
– Mark Viola
Jan 28 at 16:27












$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36






$begingroup$
@SADBOYS The "Hint" as written, is not much of a hint since $x_n$, as written, fails to converge. I've posted a solution that I hope you find useful. ;-)
$endgroup$
– Mark Viola
Jan 28 at 16:36














$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31






$begingroup$
@Mark: I actually meant the OP, since it seemed he had solved it another way, but was specifically asking for how to use the hint. But thanks anyway.
$endgroup$
– Diger
Jan 28 at 17:31












2 Answers
2






active

oldest

votes


















6












$begingroup$


I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.






Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as



$$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$



Using $(1)$, we see that



$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
&=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
end{align}$$



Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals



$$begin{align}
sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
&=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
&=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
end{align}$$



Substitution of $(3)$ into $(2)$ yields



$$begin{align}
sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
end{align}$$



Finally, using the limit definition of the Euler-Mascheroni constant



$$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$



we arrive at the coveted limit



$$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Here is another method using analytic regularization.



    We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
    $$
    eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
    zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
    $$

    where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
    $$
    zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
    stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
    $$

    where the second line now converges for $0<s<2$ and hence
    $$
    eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
    $$

    Deriving with respect to $s$ and setting $s=1$
    $$
    eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
    =-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
    $$

    we have
    $$
    coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
    $$



    When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
    $$
    -{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
    sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
    =log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
    =log(2) sum_{k=1}^N frac{1}{k} \
    = log(2) left{ log(N) + gamma + {cal O}(1/N) right}
    $$

    and therefore
    $$
    eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
    $$






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090911%2fevaluate-sum-limits-n-1-infty-1n-frac-lnnn%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$


      I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.






      Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as



      $$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$



      Using $(1)$, we see that



      $$begin{align}
      sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
      &=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
      end{align}$$



      Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals



      $$begin{align}
      sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
      &=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
      &=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
      end{align}$$



      Substitution of $(3)$ into $(2)$ yields



      $$begin{align}
      sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
      end{align}$$



      Finally, using the limit definition of the Euler-Mascheroni constant



      $$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$



      we arrive at the coveted limit



      $$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$






      share|cite|improve this answer











      $endgroup$


















        6












        $begingroup$


        I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.






        Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as



        $$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$



        Using $(1)$, we see that



        $$begin{align}
        sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
        &=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
        end{align}$$



        Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals



        $$begin{align}
        sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
        &=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
        &=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
        end{align}$$



        Substitution of $(3)$ into $(2)$ yields



        $$begin{align}
        sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
        end{align}$$



        Finally, using the limit definition of the Euler-Mascheroni constant



        $$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$



        we arrive at the coveted limit



        $$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$






        share|cite|improve this answer











        $endgroup$
















          6












          6








          6





          $begingroup$


          I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.






          Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as



          $$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$



          Using $(1)$, we see that



          $$begin{align}
          sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
          &=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
          end{align}$$



          Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals



          $$begin{align}
          sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
          &=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
          &=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
          end{align}$$



          Substitution of $(3)$ into $(2)$ yields



          $$begin{align}
          sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
          end{align}$$



          Finally, using the limit definition of the Euler-Mascheroni constant



          $$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$



          we arrive at the coveted limit



          $$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$






          share|cite|improve this answer











          $endgroup$




          I thought that it would be instructive to present a straightforward way to evaluate the series of interest using the Euler Maclaurin Summation Formula. To that end we proceed.






          Note that we can write any alternating sum $sum_{n=1}^{2N}(-1)^na_n$ as



          $$sum_{n=1}^{2N}(-1)^na_n=2sum_{n=1}^N a_{2n}-sum_{n=1}^{2N}a_ntag1$$



          Using $(1)$, we see that



          $$begin{align}
          sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=2sum_{n=1}^N frac{log(2n)}{2n}-sum_{n=1}^{2N}frac{log(n)}{n}\\
          &=log(2)sum_{n=1}^Nfrac1n-sum_{n=N+1}^{2N}frac{log(n)}{n}tag2
          end{align}$$



          Applying the Euler Maclaurin Summation Formula to the second summation on the right-hand side of $(2)$ reveals



          $$begin{align}
          sum_{n=N+1}^{2N}frac{log(n)}{n}&=int_N^{2N}frac{log(x)}{x},dx+Oleft(frac{log(N)}{N}right)\\
          &=frac12 log^2(2N)-frac12log^2(N)+Oleft(frac{log(N)}{N}right)\\
          &=frac12log^2(2)+log(2)log(N)+Oleft(frac{log(N)}{N}right)tag3
          end{align}$$



          Substitution of $(3)$ into $(2)$ yields



          $$begin{align}
          sum_{n=1}^{2N}(-1)^n frac{log(n)}{n}&=log(2)left(-log(N)+sum_{n=1}^N frac1nright)-frac12log^2(2)+Oleft(frac{log(N)}{N}right)
          end{align}$$



          Finally, using the limit definition of the Euler-Mascheroni constant



          $$gammaequivlim_{Ntoinfty}left(-log(N)+sum_{n=1}^Nfrac1nright)$$



          we arrive at the coveted limit



          $$sum_{n=1}^inftyfrac{(-1)^nlog(n)}{n}=gammalog(2)-frac12log^2(2)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 28 at 16:38

























          answered Jan 28 at 16:24









          Mark ViolaMark Viola

          134k1278176




          134k1278176























              1












              $begingroup$

              Here is another method using analytic regularization.



              We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
              $$
              eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
              zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
              $$

              where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
              $$
              zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
              stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
              $$

              where the second line now converges for $0<s<2$ and hence
              $$
              eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
              $$

              Deriving with respect to $s$ and setting $s=1$
              $$
              eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
              =-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
              $$

              we have
              $$
              coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
              $$



              When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
              $$
              -{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
              sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
              =log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
              =log(2) sum_{k=1}^N frac{1}{k} \
              = log(2) left{ log(N) + gamma + {cal O}(1/N) right}
              $$

              and therefore
              $$
              eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
              $$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Here is another method using analytic regularization.



                We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
                $$
                eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
                zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
                $$

                where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
                $$
                zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
                stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
                $$

                where the second line now converges for $0<s<2$ and hence
                $$
                eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
                $$

                Deriving with respect to $s$ and setting $s=1$
                $$
                eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
                =-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
                $$

                we have
                $$
                coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
                $$



                When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
                $$
                -{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
                sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
                =log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
                =log(2) sum_{k=1}^N frac{1}{k} \
                = log(2) left{ log(N) + gamma + {cal O}(1/N) right}
                $$

                and therefore
                $$
                eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
                $$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Here is another method using analytic regularization.



                  We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
                  $$
                  eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
                  zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
                  $$

                  where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
                  $$
                  zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
                  stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
                  $$

                  where the second line now converges for $0<s<2$ and hence
                  $$
                  eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
                  $$

                  Deriving with respect to $s$ and setting $s=1$
                  $$
                  eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
                  =-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
                  $$

                  we have
                  $$
                  coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
                  $$



                  When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
                  $$
                  -{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
                  sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
                  =log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
                  =log(2) sum_{k=1}^N frac{1}{k} \
                  = log(2) left{ log(N) + gamma + {cal O}(1/N) right}
                  $$

                  and therefore
                  $$
                  eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  Here is another method using analytic regularization.



                  We have $eta(s)=left(1-2^{1-s}right) zeta(s)$, and so about $s=1$
                  $$
                  eta(s)=left(log(2)(s-1) - frac{log^2(2)}{2} , (s-1)^2 + {cal O}left((s-1)^3right)right) zeta(s) \
                  zeta(s) = -frac{1}{2pi i} int_{-iinfty}^{iinfty} {rm d}lambda , lambda^{-s} , frac{rm d}{{rm d}lambda} log left( frac{sin(pilambda)}{pi lambda} right)
                  $$

                  where for $s>1$ the contour can be closed to the right and the residue theorem is used. For regularity at $lambda=0$, $s<2$ is required also. Substituting $lambda=it$
                  $$
                  zeta(s) = frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{-s} , frac{rm d}{{rm d}t} log left( frac{sinh(pi t)}{pi t} right) \
                  stackrel{{rm P.I. | s>1}}{=} frac{sinleft(frac{pi s}{2}right)}{pi (s-1)} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right)
                  $$

                  where the second line now converges for $0<s<2$ and hence
                  $$
                  eta(s) = left(log(2) - frac{log^2(2)}{2} , (s-1) + {cal O}left((s-1)^2right)right) frac{sinleft(frac{pi s}{2}right)}{pi} int_{0}^{infty} {rm d}t , t^{1-s} , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) , .
                  $$

                  Deriving with respect to $s$ and setting $s=1$
                  $$
                  eta'(1)=-frac{log(2)}{pi} int_0^infty {rm d}t log(t) , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) - frac{log^2(2)}{2pi} int_0^infty {rm d}t , frac{rm d^2}{{rm d}t^2} log left( frac{sinh(pi t)}{pi t} right) \
                  =-{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) - frac{log^2(2)}{2}
                  $$

                  we have
                  $$
                  coth(pi t)-frac{1}{pi t} = frac{2t}{pi} sum_{k=1}^infty frac{1}{k^2+t^2} , .
                  $$



                  When interchanging summation and integration order we acquire divergencies, because $coth(infty)=1$, but each summand vanishes for $trightarrow infty$. Due to the uniqueness of the result, it does not change up to some divergent part though:
                  $$
                  -{log(2)} int_0^infty {rm d}t log(t) , frac{rm d}{{rm d}t} left( coth(pi t) - frac{1}{pi t}right) \
                  sim -log(2) sum_{k=1}^N int_0^infty {rm d}t , log(t) frac{rm d}{{rm d t}} frac{2t/pi}{k^2+t^2} \
                  =log(2) sum_{k=1}^N int_0^infty {rm d}t , frac{2/pi}{k^2+t^2} \
                  =log(2) sum_{k=1}^N frac{1}{k} \
                  = log(2) left{ log(N) + gamma + {cal O}(1/N) right}
                  $$

                  and therefore
                  $$
                  eta'(1)=gamma log(2) - frac{log^2(2)}{2} , .
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 28 at 22:28

























                  answered Jan 28 at 22:22









                  DigerDiger

                  1,8101514




                  1,8101514






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090911%2fevaluate-sum-limits-n-1-infty-1n-frac-lnnn%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                      Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                      A Topological Invariant for $pi_3(U(n))$