An Irresistible integral: $int_0^infty frac{x^{2m}}{(ax^2+b)^n}mathrm...
$begingroup$
According to the author of Irresistible Integrals,
$$I(n,m;a,b)=int_0^infty frac{x^{2m}mathrm dx}{(ax^2+b)^n}=frac{pi}{2a^mb^{n-m-1}sqrt{ab}}frac{(2m-1)!!(2n-2m-3)!!}{(2m-2)!!}$$
Which I am attempting to prove. My progress:
$$J(n;a,b)=I(n,0;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^n}$$
As I have shown in other posts of mine, this integral satisfies the recurrence
$$J(n;a,b)=frac{2n-3}{2bn}J(n-1;a,b)$$
And has the base case $$J(1;a,b)=fracpi{2sqrt{ab}}$$
So
$$J(n;a,b)=frac{pi}{2^{2n-1}b^{n-1}sqrt{ab}}{2n-2choose n-1}$$
Then I noticed that
$$frac{partial}{partial a}J(n;a,b)=-nI(n+1,1;a,b)$$
$$frac{partial^2}{partial a^2}J(n;a,b)=n(n+1)I(n+2,2;a,b)$$
$$...$$
$$frac{partial^k}{partial a^k}J(n;a,b)=(-1)^k(n)_kI(n+k,k;a,b)=frac{pisqrtpi}{2^{2n-1}b^{n-1}a^{k}sqrt{ab},Gamma(frac{1-2k}2)}{2n-2choose n-1}$$
Here $(n)_k=frac{Gamma(n+k)}{Gamma(n)}$. Yet I am confused as to how to proceed. Could I have some help?
real-analysis calculus integration
$endgroup$
add a comment |
$begingroup$
According to the author of Irresistible Integrals,
$$I(n,m;a,b)=int_0^infty frac{x^{2m}mathrm dx}{(ax^2+b)^n}=frac{pi}{2a^mb^{n-m-1}sqrt{ab}}frac{(2m-1)!!(2n-2m-3)!!}{(2m-2)!!}$$
Which I am attempting to prove. My progress:
$$J(n;a,b)=I(n,0;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^n}$$
As I have shown in other posts of mine, this integral satisfies the recurrence
$$J(n;a,b)=frac{2n-3}{2bn}J(n-1;a,b)$$
And has the base case $$J(1;a,b)=fracpi{2sqrt{ab}}$$
So
$$J(n;a,b)=frac{pi}{2^{2n-1}b^{n-1}sqrt{ab}}{2n-2choose n-1}$$
Then I noticed that
$$frac{partial}{partial a}J(n;a,b)=-nI(n+1,1;a,b)$$
$$frac{partial^2}{partial a^2}J(n;a,b)=n(n+1)I(n+2,2;a,b)$$
$$...$$
$$frac{partial^k}{partial a^k}J(n;a,b)=(-1)^k(n)_kI(n+k,k;a,b)=frac{pisqrtpi}{2^{2n-1}b^{n-1}a^{k}sqrt{ab},Gamma(frac{1-2k}2)}{2n-2choose n-1}$$
Here $(n)_k=frac{Gamma(n+k)}{Gamma(n)}$. Yet I am confused as to how to proceed. Could I have some help?
real-analysis calculus integration
$endgroup$
1
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50
add a comment |
$begingroup$
According to the author of Irresistible Integrals,
$$I(n,m;a,b)=int_0^infty frac{x^{2m}mathrm dx}{(ax^2+b)^n}=frac{pi}{2a^mb^{n-m-1}sqrt{ab}}frac{(2m-1)!!(2n-2m-3)!!}{(2m-2)!!}$$
Which I am attempting to prove. My progress:
$$J(n;a,b)=I(n,0;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^n}$$
As I have shown in other posts of mine, this integral satisfies the recurrence
$$J(n;a,b)=frac{2n-3}{2bn}J(n-1;a,b)$$
And has the base case $$J(1;a,b)=fracpi{2sqrt{ab}}$$
So
$$J(n;a,b)=frac{pi}{2^{2n-1}b^{n-1}sqrt{ab}}{2n-2choose n-1}$$
Then I noticed that
$$frac{partial}{partial a}J(n;a,b)=-nI(n+1,1;a,b)$$
$$frac{partial^2}{partial a^2}J(n;a,b)=n(n+1)I(n+2,2;a,b)$$
$$...$$
$$frac{partial^k}{partial a^k}J(n;a,b)=(-1)^k(n)_kI(n+k,k;a,b)=frac{pisqrtpi}{2^{2n-1}b^{n-1}a^{k}sqrt{ab},Gamma(frac{1-2k}2)}{2n-2choose n-1}$$
Here $(n)_k=frac{Gamma(n+k)}{Gamma(n)}$. Yet I am confused as to how to proceed. Could I have some help?
real-analysis calculus integration
$endgroup$
According to the author of Irresistible Integrals,
$$I(n,m;a,b)=int_0^infty frac{x^{2m}mathrm dx}{(ax^2+b)^n}=frac{pi}{2a^mb^{n-m-1}sqrt{ab}}frac{(2m-1)!!(2n-2m-3)!!}{(2m-2)!!}$$
Which I am attempting to prove. My progress:
$$J(n;a,b)=I(n,0;a,b)=int_0^infty frac{mathrm dx}{(ax^2+b)^n}$$
As I have shown in other posts of mine, this integral satisfies the recurrence
$$J(n;a,b)=frac{2n-3}{2bn}J(n-1;a,b)$$
And has the base case $$J(1;a,b)=fracpi{2sqrt{ab}}$$
So
$$J(n;a,b)=frac{pi}{2^{2n-1}b^{n-1}sqrt{ab}}{2n-2choose n-1}$$
Then I noticed that
$$frac{partial}{partial a}J(n;a,b)=-nI(n+1,1;a,b)$$
$$frac{partial^2}{partial a^2}J(n;a,b)=n(n+1)I(n+2,2;a,b)$$
$$...$$
$$frac{partial^k}{partial a^k}J(n;a,b)=(-1)^k(n)_kI(n+k,k;a,b)=frac{pisqrtpi}{2^{2n-1}b^{n-1}a^{k}sqrt{ab},Gamma(frac{1-2k}2)}{2n-2choose n-1}$$
Here $(n)_k=frac{Gamma(n+k)}{Gamma(n)}$. Yet I am confused as to how to proceed. Could I have some help?
real-analysis calculus integration
real-analysis calculus integration
edited Jan 23 at 0:55
clathratus
asked Jan 22 at 18:26


clathratusclathratus
4,8871338
4,8871338
1
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50
add a comment |
1
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50
1
1
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here is an alternative method where I will make use of a so-called Schwinger parametrisation. Such a parametrisation is particularly suited to integrals where a polynomial raised to a power appears in the denominator of the integrand.
For a positive, continuous function $beta (x)$ observe that for $p > 0$
$$frac{1}{beta^p (x)} = frac{1}{Gamma (p)} int_0^infty u^{p - 1} e^{-u beta(x)} , du.$$
It is this observation that is known as the Schwinger parametrisation.
I will assume $a,b > 0$ and $m,n in mathbb{N}$ such that $n > m$. Choosing $beta (x) = ax^2 + b$ and $p = n$ we have
$$frac{1}{(ax^2 + b)^n} = frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-u(ax^2 + b)} ,du.$$
The integral $I(m, n; a, b)$ can thus be rewritten as
begin{align}
I(m,n; a,b) &= frac{1}{Gamma (n)} int_0^infty int_0^infty x^{2m} u^{n - 1} e^{-u(ax^2 + b)} , du , dx\
&= frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-ub} int_0^infty x^{2m} e^{-uax^2} , dx , du,
end{align}
after the order of integration has been changed.
Enforcing a substitution of $x mapsto sqrt{dfrac{x}{ua}}$ leads to
begin{align}
I(m,n;a,b) &= frac{1}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m - 3/2} e^{-ub} int_0^infty x^{m - 1/2} e^{-x} , dx\
&= frac{Gamma (m + 1/2)}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-ub} , du.
end{align}
Next, enforcing a substitution of $u mapsto u/b$ yields
begin{align}
I(m,n;a,b) &= frac{Gamma (m + 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-u} , du\
&= frac{Gamma (m + 1/2) Gamma (n - m - 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}},
end{align}
or in terms of the beta function
$$I(m,n;a,b) = frac{1}{2b^n} left (frac{b}{a} right )^{m + frac{1}{2}} operatorname{B} left (n - m - frac{1}{2}, m + frac{1}{2} right ),$$
in agreement with the result given by @Sangchul Lee. Granted, the substitution Sangchul Lee uses is pretty slick, and gets one to this point a lot quicker than making use of a Schwinger parametrisation, but it at least shows you an alternative approach to reaching the same point.
Note that in terms of central binomial coefficients the result can be expressed as
$$I(m,n; a, b) = frac{n pi}{(2n - 2m - 1) 2^{2n} a^m b^{n - m - 1} sqrt{ab}} frac{binom{2m}{m} binom{2n - 2m}{n - m}}{binom{n}{m}}.$$
$endgroup$
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
add a comment |
$begingroup$
You may substitute $ax^2 + b = b/u$ to obtain
begin{align*}
int_{0}^{infty} frac{x^{2m}}{(ax^2+b)^n} , mathrm{d}x
&= int_{0}^{1} frac{left( frac{b}{a}(frac{1}{u}-1) right)^m}{left(frac{b}{u}right)^n} , frac{sqrt{b/a}}{2u^{3/2}(1-u)^{1/2}} mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} int_{0}^{1} u^{n-m-3/2}(1-u)^{m-1/2} , mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} mathrm{B}left(n-m-tfrac{1}{2}, m + tfrac{1}{2}right).
end{align*}
Hope the computation is correct as I hurried a bit when writing things down...
$endgroup$
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083511%2fan-irresistible-integral-int-0-infty-fracx2max2bn-mathrm-dx-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is an alternative method where I will make use of a so-called Schwinger parametrisation. Such a parametrisation is particularly suited to integrals where a polynomial raised to a power appears in the denominator of the integrand.
For a positive, continuous function $beta (x)$ observe that for $p > 0$
$$frac{1}{beta^p (x)} = frac{1}{Gamma (p)} int_0^infty u^{p - 1} e^{-u beta(x)} , du.$$
It is this observation that is known as the Schwinger parametrisation.
I will assume $a,b > 0$ and $m,n in mathbb{N}$ such that $n > m$. Choosing $beta (x) = ax^2 + b$ and $p = n$ we have
$$frac{1}{(ax^2 + b)^n} = frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-u(ax^2 + b)} ,du.$$
The integral $I(m, n; a, b)$ can thus be rewritten as
begin{align}
I(m,n; a,b) &= frac{1}{Gamma (n)} int_0^infty int_0^infty x^{2m} u^{n - 1} e^{-u(ax^2 + b)} , du , dx\
&= frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-ub} int_0^infty x^{2m} e^{-uax^2} , dx , du,
end{align}
after the order of integration has been changed.
Enforcing a substitution of $x mapsto sqrt{dfrac{x}{ua}}$ leads to
begin{align}
I(m,n;a,b) &= frac{1}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m - 3/2} e^{-ub} int_0^infty x^{m - 1/2} e^{-x} , dx\
&= frac{Gamma (m + 1/2)}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-ub} , du.
end{align}
Next, enforcing a substitution of $u mapsto u/b$ yields
begin{align}
I(m,n;a,b) &= frac{Gamma (m + 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-u} , du\
&= frac{Gamma (m + 1/2) Gamma (n - m - 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}},
end{align}
or in terms of the beta function
$$I(m,n;a,b) = frac{1}{2b^n} left (frac{b}{a} right )^{m + frac{1}{2}} operatorname{B} left (n - m - frac{1}{2}, m + frac{1}{2} right ),$$
in agreement with the result given by @Sangchul Lee. Granted, the substitution Sangchul Lee uses is pretty slick, and gets one to this point a lot quicker than making use of a Schwinger parametrisation, but it at least shows you an alternative approach to reaching the same point.
Note that in terms of central binomial coefficients the result can be expressed as
$$I(m,n; a, b) = frac{n pi}{(2n - 2m - 1) 2^{2n} a^m b^{n - m - 1} sqrt{ab}} frac{binom{2m}{m} binom{2n - 2m}{n - m}}{binom{n}{m}}.$$
$endgroup$
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
add a comment |
$begingroup$
Here is an alternative method where I will make use of a so-called Schwinger parametrisation. Such a parametrisation is particularly suited to integrals where a polynomial raised to a power appears in the denominator of the integrand.
For a positive, continuous function $beta (x)$ observe that for $p > 0$
$$frac{1}{beta^p (x)} = frac{1}{Gamma (p)} int_0^infty u^{p - 1} e^{-u beta(x)} , du.$$
It is this observation that is known as the Schwinger parametrisation.
I will assume $a,b > 0$ and $m,n in mathbb{N}$ such that $n > m$. Choosing $beta (x) = ax^2 + b$ and $p = n$ we have
$$frac{1}{(ax^2 + b)^n} = frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-u(ax^2 + b)} ,du.$$
The integral $I(m, n; a, b)$ can thus be rewritten as
begin{align}
I(m,n; a,b) &= frac{1}{Gamma (n)} int_0^infty int_0^infty x^{2m} u^{n - 1} e^{-u(ax^2 + b)} , du , dx\
&= frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-ub} int_0^infty x^{2m} e^{-uax^2} , dx , du,
end{align}
after the order of integration has been changed.
Enforcing a substitution of $x mapsto sqrt{dfrac{x}{ua}}$ leads to
begin{align}
I(m,n;a,b) &= frac{1}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m - 3/2} e^{-ub} int_0^infty x^{m - 1/2} e^{-x} , dx\
&= frac{Gamma (m + 1/2)}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-ub} , du.
end{align}
Next, enforcing a substitution of $u mapsto u/b$ yields
begin{align}
I(m,n;a,b) &= frac{Gamma (m + 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-u} , du\
&= frac{Gamma (m + 1/2) Gamma (n - m - 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}},
end{align}
or in terms of the beta function
$$I(m,n;a,b) = frac{1}{2b^n} left (frac{b}{a} right )^{m + frac{1}{2}} operatorname{B} left (n - m - frac{1}{2}, m + frac{1}{2} right ),$$
in agreement with the result given by @Sangchul Lee. Granted, the substitution Sangchul Lee uses is pretty slick, and gets one to this point a lot quicker than making use of a Schwinger parametrisation, but it at least shows you an alternative approach to reaching the same point.
Note that in terms of central binomial coefficients the result can be expressed as
$$I(m,n; a, b) = frac{n pi}{(2n - 2m - 1) 2^{2n} a^m b^{n - m - 1} sqrt{ab}} frac{binom{2m}{m} binom{2n - 2m}{n - m}}{binom{n}{m}}.$$
$endgroup$
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
add a comment |
$begingroup$
Here is an alternative method where I will make use of a so-called Schwinger parametrisation. Such a parametrisation is particularly suited to integrals where a polynomial raised to a power appears in the denominator of the integrand.
For a positive, continuous function $beta (x)$ observe that for $p > 0$
$$frac{1}{beta^p (x)} = frac{1}{Gamma (p)} int_0^infty u^{p - 1} e^{-u beta(x)} , du.$$
It is this observation that is known as the Schwinger parametrisation.
I will assume $a,b > 0$ and $m,n in mathbb{N}$ such that $n > m$. Choosing $beta (x) = ax^2 + b$ and $p = n$ we have
$$frac{1}{(ax^2 + b)^n} = frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-u(ax^2 + b)} ,du.$$
The integral $I(m, n; a, b)$ can thus be rewritten as
begin{align}
I(m,n; a,b) &= frac{1}{Gamma (n)} int_0^infty int_0^infty x^{2m} u^{n - 1} e^{-u(ax^2 + b)} , du , dx\
&= frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-ub} int_0^infty x^{2m} e^{-uax^2} , dx , du,
end{align}
after the order of integration has been changed.
Enforcing a substitution of $x mapsto sqrt{dfrac{x}{ua}}$ leads to
begin{align}
I(m,n;a,b) &= frac{1}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m - 3/2} e^{-ub} int_0^infty x^{m - 1/2} e^{-x} , dx\
&= frac{Gamma (m + 1/2)}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-ub} , du.
end{align}
Next, enforcing a substitution of $u mapsto u/b$ yields
begin{align}
I(m,n;a,b) &= frac{Gamma (m + 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-u} , du\
&= frac{Gamma (m + 1/2) Gamma (n - m - 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}},
end{align}
or in terms of the beta function
$$I(m,n;a,b) = frac{1}{2b^n} left (frac{b}{a} right )^{m + frac{1}{2}} operatorname{B} left (n - m - frac{1}{2}, m + frac{1}{2} right ),$$
in agreement with the result given by @Sangchul Lee. Granted, the substitution Sangchul Lee uses is pretty slick, and gets one to this point a lot quicker than making use of a Schwinger parametrisation, but it at least shows you an alternative approach to reaching the same point.
Note that in terms of central binomial coefficients the result can be expressed as
$$I(m,n; a, b) = frac{n pi}{(2n - 2m - 1) 2^{2n} a^m b^{n - m - 1} sqrt{ab}} frac{binom{2m}{m} binom{2n - 2m}{n - m}}{binom{n}{m}}.$$
$endgroup$
Here is an alternative method where I will make use of a so-called Schwinger parametrisation. Such a parametrisation is particularly suited to integrals where a polynomial raised to a power appears in the denominator of the integrand.
For a positive, continuous function $beta (x)$ observe that for $p > 0$
$$frac{1}{beta^p (x)} = frac{1}{Gamma (p)} int_0^infty u^{p - 1} e^{-u beta(x)} , du.$$
It is this observation that is known as the Schwinger parametrisation.
I will assume $a,b > 0$ and $m,n in mathbb{N}$ such that $n > m$. Choosing $beta (x) = ax^2 + b$ and $p = n$ we have
$$frac{1}{(ax^2 + b)^n} = frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-u(ax^2 + b)} ,du.$$
The integral $I(m, n; a, b)$ can thus be rewritten as
begin{align}
I(m,n; a,b) &= frac{1}{Gamma (n)} int_0^infty int_0^infty x^{2m} u^{n - 1} e^{-u(ax^2 + b)} , du , dx\
&= frac{1}{Gamma (n)} int_0^infty u^{n - 1} e^{-ub} int_0^infty x^{2m} e^{-uax^2} , dx , du,
end{align}
after the order of integration has been changed.
Enforcing a substitution of $x mapsto sqrt{dfrac{x}{ua}}$ leads to
begin{align}
I(m,n;a,b) &= frac{1}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m - 3/2} e^{-ub} int_0^infty x^{m - 1/2} e^{-x} , dx\
&= frac{Gamma (m + 1/2)}{2 Gamma (n) a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-ub} , du.
end{align}
Next, enforcing a substitution of $u mapsto u/b$ yields
begin{align}
I(m,n;a,b) &= frac{Gamma (m + 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}} int_0^infty u^{n - m -3/2} e^{-u} , du\
&= frac{Gamma (m + 1/2) Gamma (n - m - 1/2)}{2 Gamma (n) b^{n - m - 1/2} a^{m + 1/2}},
end{align}
or in terms of the beta function
$$I(m,n;a,b) = frac{1}{2b^n} left (frac{b}{a} right )^{m + frac{1}{2}} operatorname{B} left (n - m - frac{1}{2}, m + frac{1}{2} right ),$$
in agreement with the result given by @Sangchul Lee. Granted, the substitution Sangchul Lee uses is pretty slick, and gets one to this point a lot quicker than making use of a Schwinger parametrisation, but it at least shows you an alternative approach to reaching the same point.
Note that in terms of central binomial coefficients the result can be expressed as
$$I(m,n; a, b) = frac{n pi}{(2n - 2m - 1) 2^{2n} a^m b^{n - m - 1} sqrt{ab}} frac{binom{2m}{m} binom{2n - 2m}{n - m}}{binom{n}{m}}.$$
answered Feb 10 at 4:00


omegadotomegadot
6,3972829
6,3972829
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
add a comment |
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
$begingroup$
Very very impressive! Thank you very much!
$endgroup$
– clathratus
Feb 10 at 4:01
add a comment |
$begingroup$
You may substitute $ax^2 + b = b/u$ to obtain
begin{align*}
int_{0}^{infty} frac{x^{2m}}{(ax^2+b)^n} , mathrm{d}x
&= int_{0}^{1} frac{left( frac{b}{a}(frac{1}{u}-1) right)^m}{left(frac{b}{u}right)^n} , frac{sqrt{b/a}}{2u^{3/2}(1-u)^{1/2}} mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} int_{0}^{1} u^{n-m-3/2}(1-u)^{m-1/2} , mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} mathrm{B}left(n-m-tfrac{1}{2}, m + tfrac{1}{2}right).
end{align*}
Hope the computation is correct as I hurried a bit when writing things down...
$endgroup$
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
add a comment |
$begingroup$
You may substitute $ax^2 + b = b/u$ to obtain
begin{align*}
int_{0}^{infty} frac{x^{2m}}{(ax^2+b)^n} , mathrm{d}x
&= int_{0}^{1} frac{left( frac{b}{a}(frac{1}{u}-1) right)^m}{left(frac{b}{u}right)^n} , frac{sqrt{b/a}}{2u^{3/2}(1-u)^{1/2}} mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} int_{0}^{1} u^{n-m-3/2}(1-u)^{m-1/2} , mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} mathrm{B}left(n-m-tfrac{1}{2}, m + tfrac{1}{2}right).
end{align*}
Hope the computation is correct as I hurried a bit when writing things down...
$endgroup$
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
add a comment |
$begingroup$
You may substitute $ax^2 + b = b/u$ to obtain
begin{align*}
int_{0}^{infty} frac{x^{2m}}{(ax^2+b)^n} , mathrm{d}x
&= int_{0}^{1} frac{left( frac{b}{a}(frac{1}{u}-1) right)^m}{left(frac{b}{u}right)^n} , frac{sqrt{b/a}}{2u^{3/2}(1-u)^{1/2}} mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} int_{0}^{1} u^{n-m-3/2}(1-u)^{m-1/2} , mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} mathrm{B}left(n-m-tfrac{1}{2}, m + tfrac{1}{2}right).
end{align*}
Hope the computation is correct as I hurried a bit when writing things down...
$endgroup$
You may substitute $ax^2 + b = b/u$ to obtain
begin{align*}
int_{0}^{infty} frac{x^{2m}}{(ax^2+b)^n} , mathrm{d}x
&= int_{0}^{1} frac{left( frac{b}{a}(frac{1}{u}-1) right)^m}{left(frac{b}{u}right)^n} , frac{sqrt{b/a}}{2u^{3/2}(1-u)^{1/2}} mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} int_{0}^{1} u^{n-m-3/2}(1-u)^{m-1/2} , mathrm{d}u \
&= frac{(b/a)^{m+1/2}}{2 b^n} mathrm{B}left(n-m-tfrac{1}{2}, m + tfrac{1}{2}right).
end{align*}
Hope the computation is correct as I hurried a bit when writing things down...
answered Jan 22 at 18:42


Sangchul LeeSangchul Lee
95.6k12171279
95.6k12171279
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
add a comment |
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
$begingroup$
Does this reduce to the answer presented in Irresistible Integrals?
$endgroup$
– clathratus
Jan 22 at 18:48
1
1
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@clathratus The gamma function of half-integers reduces to double-factorial multiplied by $sqrt{pi}/2^{[text{some integer}]}$. So, if I computed everything correctly, yes.
$endgroup$
– Sangchul Lee
Jan 22 at 19:02
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
$begingroup$
@SangchulLee - Is there a method (i.e. Half Tangent Substitution) with your substitution? or was it something you saw yourself? Very cool! It compressed my method of 3 subs to one in a single go! math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:52
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083511%2fan-irresistible-integral-int-0-infty-fracx2max2bn-mathrm-dx-fr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I believe you’re missing a $mathrm dx$ in the title. Just nitpicking.
$endgroup$
– Frank W.
Jan 22 at 21:05
$begingroup$
@FrankW. Thanks for catching that :)
$endgroup$
– clathratus
Jan 23 at 0:57
$begingroup$
Already done :-) Just need to drag the $a$ out the front. math.stackexchange.com/questions/3057298/…
$endgroup$
– DavidG
Jan 23 at 11:50