Write a Limit to calculate $f'(0)$












1












$begingroup$


Let $f(x) = frac {2}{1+x^2} $



I need to write a limit to calculate $f'(0)$.



I think I have the basic understanding. Any help would be greatly appreciated.



d=delta and so far what I have is



$f'(x)$= lim (f(x+dx)-f(x))/dx

(dx)->0



((2/1+(x+dx)^2)-(2/1+x^2))/dx



((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx



((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx



((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx



(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)



(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)



(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)



that's as far as I have gotten. Any input would be great.










share|cite|improve this question











$endgroup$












  • $begingroup$
    f ' (o) derivative*
    $endgroup$
    – user637291
    Jan 22 at 19:24






  • 1




    $begingroup$
    Is this $$f(x)=frac{1}{1+x^2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:24






  • 1




    $begingroup$
    What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
    $endgroup$
    – John Coleman
    Jan 22 at 19:26






  • 1




    $begingroup$
    @Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:29






  • 1




    $begingroup$
    Yes we all miss that factor $2$, thank you!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:31
















1












$begingroup$


Let $f(x) = frac {2}{1+x^2} $



I need to write a limit to calculate $f'(0)$.



I think I have the basic understanding. Any help would be greatly appreciated.



d=delta and so far what I have is



$f'(x)$= lim (f(x+dx)-f(x))/dx

(dx)->0



((2/1+(x+dx)^2)-(2/1+x^2))/dx



((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx



((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx



((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx



(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)



(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)



(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)



that's as far as I have gotten. Any input would be great.










share|cite|improve this question











$endgroup$












  • $begingroup$
    f ' (o) derivative*
    $endgroup$
    – user637291
    Jan 22 at 19:24






  • 1




    $begingroup$
    Is this $$f(x)=frac{1}{1+x^2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:24






  • 1




    $begingroup$
    What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
    $endgroup$
    – John Coleman
    Jan 22 at 19:26






  • 1




    $begingroup$
    @Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:29






  • 1




    $begingroup$
    Yes we all miss that factor $2$, thank you!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:31














1












1








1


1



$begingroup$


Let $f(x) = frac {2}{1+x^2} $



I need to write a limit to calculate $f'(0)$.



I think I have the basic understanding. Any help would be greatly appreciated.



d=delta and so far what I have is



$f'(x)$= lim (f(x+dx)-f(x))/dx

(dx)->0



((2/1+(x+dx)^2)-(2/1+x^2))/dx



((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx



((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx



((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx



(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)



(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)



(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)



that's as far as I have gotten. Any input would be great.










share|cite|improve this question











$endgroup$




Let $f(x) = frac {2}{1+x^2} $



I need to write a limit to calculate $f'(0)$.



I think I have the basic understanding. Any help would be greatly appreciated.



d=delta and so far what I have is



$f'(x)$= lim (f(x+dx)-f(x))/dx

(dx)->0



((2/1+(x+dx)^2)-(2/1+x^2))/dx



((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx



((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx



((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx



(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)



(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)



(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)



that's as far as I have gotten. Any input would be great.







limits functions derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 22 at 21:34







user637291

















asked Jan 22 at 19:23









user637291user637291

62




62












  • $begingroup$
    f ' (o) derivative*
    $endgroup$
    – user637291
    Jan 22 at 19:24






  • 1




    $begingroup$
    Is this $$f(x)=frac{1}{1+x^2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:24






  • 1




    $begingroup$
    What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
    $endgroup$
    – John Coleman
    Jan 22 at 19:26






  • 1




    $begingroup$
    @Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:29






  • 1




    $begingroup$
    Yes we all miss that factor $2$, thank you!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:31


















  • $begingroup$
    f ' (o) derivative*
    $endgroup$
    – user637291
    Jan 22 at 19:24






  • 1




    $begingroup$
    Is this $$f(x)=frac{1}{1+x^2}$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:24






  • 1




    $begingroup$
    What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
    $endgroup$
    – John Coleman
    Jan 22 at 19:26






  • 1




    $begingroup$
    @Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:29






  • 1




    $begingroup$
    Yes we all miss that factor $2$, thank you!
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 22 at 19:31
















$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24




$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24




1




1




$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24




$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24




1




1




$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26




$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26




1




1




$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29




$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29




1




1




$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31




$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31










2 Answers
2






active

oldest

votes


















1












$begingroup$

it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:39



















0












$begingroup$

$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083591%2fwrite-a-limit-to-calculate-f0%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
    Can you finish?
    Ok, another hint:
    The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
    right) left( {x}^{2}+1 right) }}
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
      $endgroup$
      – The Jade Emperor
      Jan 22 at 19:39
















    1












    $begingroup$

    it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
    Can you finish?
    Ok, another hint:
    The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
    right) left( {x}^{2}+1 right) }}
    $$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
      $endgroup$
      – The Jade Emperor
      Jan 22 at 19:39














    1












    1








    1





    $begingroup$

    it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
    Can you finish?
    Ok, another hint:
    The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
    right) left( {x}^{2}+1 right) }}
    $$






    share|cite|improve this answer









    $endgroup$



    it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
    Can you finish?
    Ok, another hint:
    The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
    right) left( {x}^{2}+1 right) }}
    $$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Jan 22 at 19:34









    Dr. Sonnhard GraubnerDr. Sonnhard Graubner

    77.5k42866




    77.5k42866












    • $begingroup$
      We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
      $endgroup$
      – The Jade Emperor
      Jan 22 at 19:39


















    • $begingroup$
      We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
      $endgroup$
      – The Jade Emperor
      Jan 22 at 19:39
















    $begingroup$
    We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:39




    $begingroup$
    We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
    $endgroup$
    – The Jade Emperor
    Jan 22 at 19:39











    0












    $begingroup$

    $f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
    $= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      $f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
      $= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        $f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
        $= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$






        share|cite|improve this answer











        $endgroup$



        $f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
        $= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 22 at 19:39

























        answered Jan 22 at 19:30









        Robert LewisRobert Lewis

        47.9k23067




        47.9k23067






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083591%2fwrite-a-limit-to-calculate-f0%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            'app-layout' is not a known element: how to share Component with different Modules