Write a Limit to calculate $f'(0)$
$begingroup$
Let $f(x) = frac {2}{1+x^2} $
I need to write a limit to calculate $f'(0)$.
I think I have the basic understanding. Any help would be greatly appreciated.
d=delta and so far what I have is
$f'(x)$= lim (f(x+dx)-f(x))/dx
(dx)->0
((2/1+(x+dx)^2)-(2/1+x^2))/dx
((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx
((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx
((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx
(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)
(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)
(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)
that's as far as I have gotten. Any input would be great.
limits functions derivatives
$endgroup$
|
show 2 more comments
$begingroup$
Let $f(x) = frac {2}{1+x^2} $
I need to write a limit to calculate $f'(0)$.
I think I have the basic understanding. Any help would be greatly appreciated.
d=delta and so far what I have is
$f'(x)$= lim (f(x+dx)-f(x))/dx
(dx)->0
((2/1+(x+dx)^2)-(2/1+x^2))/dx
((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx
((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx
((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx
(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)
(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)
(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)
that's as far as I have gotten. Any input would be great.
limits functions derivatives
$endgroup$
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
1
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
1
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
1
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
1
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31
|
show 2 more comments
$begingroup$
Let $f(x) = frac {2}{1+x^2} $
I need to write a limit to calculate $f'(0)$.
I think I have the basic understanding. Any help would be greatly appreciated.
d=delta and so far what I have is
$f'(x)$= lim (f(x+dx)-f(x))/dx
(dx)->0
((2/1+(x+dx)^2)-(2/1+x^2))/dx
((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx
((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx
((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx
(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)
(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)
(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)
that's as far as I have gotten. Any input would be great.
limits functions derivatives
$endgroup$
Let $f(x) = frac {2}{1+x^2} $
I need to write a limit to calculate $f'(0)$.
I think I have the basic understanding. Any help would be greatly appreciated.
d=delta and so far what I have is
$f'(x)$= lim (f(x+dx)-f(x))/dx
(dx)->0
((2/1+(x+dx)^2)-(2/1+x^2))/dx
((2/1+x^2+2xdx+dx^2)-(2/1+x^2))/dx
((2(1+x^2)-2(1+x^2+2xdx+dx^2))/(1+x^2+2xdx+dx^2)(1+x^2))/dx
((-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2))/dx
(-4xdx-2dx^2)/(1+x^2+2xdx+dx^2)(1+x^2)(dx)
(-2dx(2xdx+dx)/(1+x^2+2xdx+x^2)(1+x^2)(dx)
(-2(2xdx+dx)/(1+x^2+2xdx+dx^2)(1+x^2)
that's as far as I have gotten. Any input would be great.
limits functions derivatives
limits functions derivatives
edited Jan 22 at 21:34
user637291
asked Jan 22 at 19:23
user637291user637291
62
62
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
1
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
1
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
1
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
1
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31
|
show 2 more comments
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
1
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
1
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
1
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
1
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
1
1
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
1
1
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
1
1
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
1
1
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31
|
show 2 more comments
2 Answers
2
active
oldest
votes
$begingroup$
it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$
$endgroup$
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
add a comment |
$begingroup$
$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083591%2fwrite-a-limit-to-calculate-f0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$
$endgroup$
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
add a comment |
$begingroup$
it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$
$endgroup$
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
add a comment |
$begingroup$
it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$
$endgroup$
it is $$frac{f(x+h)-f(x)}{h}=frac{frac{2}{1+(x+h)^2}-frac{2}{1+x^2}}{h}$$
Can you finish?
Ok, another hint:
The numerator is given by $$-2,{frac {h left( h+2,x right) }{ left( {h}^{2}+2,xh+{x}^{2}+1
right) left( {x}^{2}+1 right) }}
$$
answered Jan 22 at 19:34
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77.5k42866
77.5k42866
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
add a comment |
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
$begingroup$
We should probably stop here unless OP asks for more clarification. We still dont know how much understanding the OP has...
$endgroup$
– The Jade Emperor
Jan 22 at 19:39
add a comment |
$begingroup$
$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$
$endgroup$
add a comment |
$begingroup$
$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$
$endgroup$
add a comment |
$begingroup$
$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$
$endgroup$
$f'(0) = displaystyle lim_{h to 0} dfrac{f(h) - f(0)}{h} = lim_{h to 0} left (dfrac{1}{h} right ) left ( dfrac{2}{1 + h^2} - 2 right )$
$= lim_{h to 0} left (dfrac{1}{h} right ) left ( -dfrac{2h^2}{1 + h^2} right ) = lim_{h to 0} -dfrac{2h}{1 + h^2} = 0. tag 1$
edited Jan 22 at 19:39
answered Jan 22 at 19:30
Robert LewisRobert Lewis
47.9k23067
47.9k23067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083591%2fwrite-a-limit-to-calculate-f0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
f ' (o) derivative*
$endgroup$
– user637291
Jan 22 at 19:24
1
$begingroup$
Is this $$f(x)=frac{1}{1+x^2}$$?
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:24
1
$begingroup$
What happens when you use your basic understanding with this problem? What have you tried? Where are you stuck?
$endgroup$
– John Coleman
Jan 22 at 19:26
1
$begingroup$
@Dr.SonnhardGraubner I think you missed a factor of $2$ in the numerator. :)
$endgroup$
– The Jade Emperor
Jan 22 at 19:29
1
$begingroup$
Yes we all miss that factor $2$, thank you!
$endgroup$
– Dr. Sonnhard Graubner
Jan 22 at 19:31