Determinant of a matrix of the form $M = I + xx^t$
$begingroup$
$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$
So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.
linear-algebra determinant
$endgroup$
add a comment |
$begingroup$
$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$
So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.
linear-algebra determinant
$endgroup$
1
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30
add a comment |
$begingroup$
$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$
So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.
linear-algebra determinant
$endgroup$
$$M=begin{pmatrix} 1+x_1^2 & x_1x_2 &...&x_1x_n \ x_2x_1 & 1+x_2^2 &...&x_2x_n \...&...& &...& \x_nx_1 & x_nx_2& ...&1+x_n^2&end{pmatrix}.$$
So I noticed that $M$ is a symmetric matrix and $ M=I+(x_1, x_2,...,x_n)^T(x_1, x_2,...,x_n)$. That's all I can get.
linear-algebra determinant
linear-algebra determinant
edited Jan 22 at 23:02
Silverfish
1,0271223
1,0271223
asked Jan 22 at 20:21
Yibei HeYibei He
3139
3139
1
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30
add a comment |
1
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30
1
1
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).
For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have
$$
M = I + x x^T
$$
hence, in view of the aforementioned lemma,
$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$
$endgroup$
add a comment |
$begingroup$
Consider the matrix
$$N=M-I.$$
It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
$$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
Now
$$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$
$endgroup$
add a comment |
$begingroup$
Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
$$
M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&1+x_n^2}.
$$
Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
$$
detleft(M_nright)=detpmatrix{M_{n-1}& 0\
x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&x_n^2}.
$$
The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
$$
detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
mathbf{x}&1}.
$$
The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083652%2fdeterminant-of-a-matrix-of-the-form-m-i-xxt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).
For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have
$$
M = I + x x^T
$$
hence, in view of the aforementioned lemma,
$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$
$endgroup$
add a comment |
$begingroup$
You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).
For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have
$$
M = I + x x^T
$$
hence, in view of the aforementioned lemma,
$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$
$endgroup$
add a comment |
$begingroup$
You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).
For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have
$$
M = I + x x^T
$$
hence, in view of the aforementioned lemma,
$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$
$endgroup$
You can continue from your observation using the matrix-determinant lemma (which is not hard to prove, by the way).
For a column vector $x = (x_1,...,x_n)$, and an $ntimes n $ identity matrix $I$, we have
$$
M = I + x x^T
$$
hence, in view of the aforementioned lemma,
$$
det M = (1 + x^T I x)det I = 1 + |x|^2 = 1 + x_1^2 + cdots +x_n^2.
$$
edited Jan 23 at 11:37
Rodrigo de Azevedo
13k41960
13k41960
answered Jan 22 at 20:47
HaykHayk
2,6271214
2,6271214
add a comment |
add a comment |
$begingroup$
Consider the matrix
$$N=M-I.$$
It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
$$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
Now
$$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$
$endgroup$
add a comment |
$begingroup$
Consider the matrix
$$N=M-I.$$
It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
$$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
Now
$$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$
$endgroup$
add a comment |
$begingroup$
Consider the matrix
$$N=M-I.$$
It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
$$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
Now
$$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$
$endgroup$
Consider the matrix
$$N=M-I.$$
It has rank $le1$, so its characteristic polynomial $P(lambda)=det(lambda I-N)$
has the form $lambda^n-alambda^{n-1}$. But $a$ is the trace of $N$, so
$$P(lambda)=lambda^n-(x_1^2+cdots+x_n^2)lambda^{n-1}.$$
Now
$$det M=det(I+N)=(-1)^nP(-1)=1+x_1^2+cdots+x_n^2.$$
answered Jan 22 at 20:35
Lord Shark the UnknownLord Shark the Unknown
106k1161133
106k1161133
add a comment |
add a comment |
$begingroup$
Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
$$
M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&1+x_n^2}.
$$
Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
$$
detleft(M_nright)=detpmatrix{M_{n-1}& 0\
x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&x_n^2}.
$$
The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
$$
detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
mathbf{x}&1}.
$$
The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.
$endgroup$
add a comment |
$begingroup$
Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
$$
M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&1+x_n^2}.
$$
Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
$$
detleft(M_nright)=detpmatrix{M_{n-1}& 0\
x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&x_n^2}.
$$
The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
$$
detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
mathbf{x}&1}.
$$
The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.
$endgroup$
add a comment |
$begingroup$
Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
$$
M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&1+x_n^2}.
$$
Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
$$
detleft(M_nright)=detpmatrix{M_{n-1}& 0\
x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&x_n^2}.
$$
The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
$$
detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
mathbf{x}&1}.
$$
The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.
$endgroup$
Denote by $M_n$ the matrix we want to compute the determinant. Letting $mathbf{x}=(x_1,dots,x_{n-1})$, we express $M_n$ as a block matrix:
$$
M_n=pmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&1+x_n^2}.
$$
Since $pmatrix{ x_nmathbf x^t\1+x_n^2}=pmatrix{ 0\1}+pmatrix{ mathbf x_nx^t\x_n^2}$, it follows by multi-linearity of the determinant that
$$
detleft(M_nright)=detpmatrix{M_{n-1}& 0\
x_nmathbf{x}&1}+detpmatrix{M_{n-1}& x_nmathbf x^t\
x_nmathbf{x}&x_n^2}.
$$
The first term of the right hand side is $detleft(M_{n-1}right)$; for the second one, using two times the multi-lineartiy of the determinant (with respect to lines and then columns), we derive that
$$
detleft(M_{n}right)=detleft(M_{n-1}right)+x_n^2detpmatrix{M_{n-1}& mathbf x^t\
mathbf{x}&1}.
$$
The last determinant is one: one can make the linear combinations $C_ileftarrow x_iC_n$ to see this.
answered Jan 22 at 21:46
Davide GiraudoDavide Giraudo
127k17154268
127k17154268
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083652%2fdeterminant-of-a-matrix-of-the-form-m-i-xxt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Can you determine the characteristic polynomial of $M-I$?
$endgroup$
– Lord Shark the Unknown
Jan 22 at 20:24
$begingroup$
Could you give me some more clue about the polynomial?
$endgroup$
– Yibei He
Jan 22 at 20:30