If $sum_{n=1}^{infty}a_n$ converges then $sum_{n=1}^{infty}a_n+a_{n+1}+a_{n+2}$ converges
$begingroup$
I have the following problem:
Let $a_n$, $ninmathbb{N}$ be sequence
and let $b_n=a_n+a_{n+1}+a_{n+2}$
Prove that if $sum_{n=1}^{infty}a_n$ converges then $sum_{n=1}^{infty}b_n$ converges
My attempt:
Let $sum_{n=1}^{infty}a_n=a$
$sum_{n=1}^{infty}b_n=sum_{n=1}^{infty}a_n+a_{n+1}+a_{n+2}$=
$sum_{n=1}^{infty}a_n+sum_{n=1}^{infty}a_{n+1}+sum_{n=1}^{infty}a_{n+2}$=
$sum_{n=1}^{infty}a_n$+$sum_{n=1}^{infty}a_n-a_1$+$sum_{n=1}^{infty}a_n-a_1-a_2$=
$sum_{n=1}^{infty}3a_n-2a_1-a_2$
From the linearity of series we know that $sum_{n=1}^{infty}3a_n=3a$
And the series convergence isn't affected by a change in finite number of elements of the sum
So $sum_{n=1}^{infty}b_n$ converges
Is this any good? Is it sufficient?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I have the following problem:
Let $a_n$, $ninmathbb{N}$ be sequence
and let $b_n=a_n+a_{n+1}+a_{n+2}$
Prove that if $sum_{n=1}^{infty}a_n$ converges then $sum_{n=1}^{infty}b_n$ converges
My attempt:
Let $sum_{n=1}^{infty}a_n=a$
$sum_{n=1}^{infty}b_n=sum_{n=1}^{infty}a_n+a_{n+1}+a_{n+2}$=
$sum_{n=1}^{infty}a_n+sum_{n=1}^{infty}a_{n+1}+sum_{n=1}^{infty}a_{n+2}$=
$sum_{n=1}^{infty}a_n$+$sum_{n=1}^{infty}a_n-a_1$+$sum_{n=1}^{infty}a_n-a_1-a_2$=
$sum_{n=1}^{infty}3a_n-2a_1-a_2$
From the linearity of series we know that $sum_{n=1}^{infty}3a_n=3a$
And the series convergence isn't affected by a change in finite number of elements of the sum
So $sum_{n=1}^{infty}b_n$ converges
Is this any good? Is it sufficient?
real-analysis sequences-and-series convergence
$endgroup$
2
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04
add a comment |
$begingroup$
I have the following problem:
Let $a_n$, $ninmathbb{N}$ be sequence
and let $b_n=a_n+a_{n+1}+a_{n+2}$
Prove that if $sum_{n=1}^{infty}a_n$ converges then $sum_{n=1}^{infty}b_n$ converges
My attempt:
Let $sum_{n=1}^{infty}a_n=a$
$sum_{n=1}^{infty}b_n=sum_{n=1}^{infty}a_n+a_{n+1}+a_{n+2}$=
$sum_{n=1}^{infty}a_n+sum_{n=1}^{infty}a_{n+1}+sum_{n=1}^{infty}a_{n+2}$=
$sum_{n=1}^{infty}a_n$+$sum_{n=1}^{infty}a_n-a_1$+$sum_{n=1}^{infty}a_n-a_1-a_2$=
$sum_{n=1}^{infty}3a_n-2a_1-a_2$
From the linearity of series we know that $sum_{n=1}^{infty}3a_n=3a$
And the series convergence isn't affected by a change in finite number of elements of the sum
So $sum_{n=1}^{infty}b_n$ converges
Is this any good? Is it sufficient?
real-analysis sequences-and-series convergence
$endgroup$
I have the following problem:
Let $a_n$, $ninmathbb{N}$ be sequence
and let $b_n=a_n+a_{n+1}+a_{n+2}$
Prove that if $sum_{n=1}^{infty}a_n$ converges then $sum_{n=1}^{infty}b_n$ converges
My attempt:
Let $sum_{n=1}^{infty}a_n=a$
$sum_{n=1}^{infty}b_n=sum_{n=1}^{infty}a_n+a_{n+1}+a_{n+2}$=
$sum_{n=1}^{infty}a_n+sum_{n=1}^{infty}a_{n+1}+sum_{n=1}^{infty}a_{n+2}$=
$sum_{n=1}^{infty}a_n$+$sum_{n=1}^{infty}a_n-a_1$+$sum_{n=1}^{infty}a_n-a_1-a_2$=
$sum_{n=1}^{infty}3a_n-2a_1-a_2$
From the linearity of series we know that $sum_{n=1}^{infty}3a_n=3a$
And the series convergence isn't affected by a change in finite number of elements of the sum
So $sum_{n=1}^{infty}b_n$ converges
Is this any good? Is it sufficient?
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
asked Jan 22 at 20:23
ChangaChanga
234
234
2
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04
add a comment |
2
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04
2
2
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083654%2fif-sum-n-1-inftya-n-converges-then-sum-n-1-inftya-na-n1a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083654%2fif-sum-n-1-inftya-n-converges-then-sum-n-1-inftya-na-n1a-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Your proof is correct. Here's a more general proof: if $sum a_n, sum b_n$ converge, then $sum a_n + b_n$ converges and equals $sum a_n + sum b_n$. Use this and the fact that $sumlimits_{n=1}^infty a_{n+k}$ converges for every k if $sum a_n$ exists. You basically used these statements within your proof.
$endgroup$
– James Yang
Jan 22 at 20:32
$begingroup$
Yes your proof is correct
$endgroup$
– Mike
Jan 22 at 20:35
$begingroup$
Please put in parentheses.
$endgroup$
– zhw.
Jan 22 at 21:04