How to get keys from pyspark SparseVector
I conducted a tf-idf transform and now I want to get the keys and values from the result.
I am using the following udf code to get values:
def extract_values_from_vector(vector):
return vector.values.tolist()
extract_values_from_vector_udf = udf(lambda vector:extract_values_from_vector(vector), ArrayType(DoubleType()))
extract = rescaledData.withColumn("extracted_keys", extract_keys_from_vector_udf("features"))
So if the sparsevector looks like:
features=SparseVector(123241, {20672: 4.4233, 37393: 0.0, 109847: 3.7096, 118474: 5.4042}))
extracted_keys in my extract will look like:
[4.4233, 0.0, 3.7096, 5.4042]
My question is, how can I get the keys in the SparseVector dictionary? Such as keys = [20672, 37393, 109847, 118474] ?
I am trying the following code but it won't work
def extract_keys_from_vector(vector):
return vector.indices.tolist()
extract_keys_from_vector_udf = spf.udf(lambda vector:extract_keys_from_vector(vector), ArrayType(DoubleType()))
The result it gave me is: [null,null,null,null]
Can someone help?
Many thanks in advance!
pyspark tf-idf
add a comment |
I conducted a tf-idf transform and now I want to get the keys and values from the result.
I am using the following udf code to get values:
def extract_values_from_vector(vector):
return vector.values.tolist()
extract_values_from_vector_udf = udf(lambda vector:extract_values_from_vector(vector), ArrayType(DoubleType()))
extract = rescaledData.withColumn("extracted_keys", extract_keys_from_vector_udf("features"))
So if the sparsevector looks like:
features=SparseVector(123241, {20672: 4.4233, 37393: 0.0, 109847: 3.7096, 118474: 5.4042}))
extracted_keys in my extract will look like:
[4.4233, 0.0, 3.7096, 5.4042]
My question is, how can I get the keys in the SparseVector dictionary? Such as keys = [20672, 37393, 109847, 118474] ?
I am trying the following code but it won't work
def extract_keys_from_vector(vector):
return vector.indices.tolist()
extract_keys_from_vector_udf = spf.udf(lambda vector:extract_keys_from_vector(vector), ArrayType(DoubleType()))
The result it gave me is: [null,null,null,null]
Can someone help?
Many thanks in advance!
pyspark tf-idf
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
2
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be ofIntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13
add a comment |
I conducted a tf-idf transform and now I want to get the keys and values from the result.
I am using the following udf code to get values:
def extract_values_from_vector(vector):
return vector.values.tolist()
extract_values_from_vector_udf = udf(lambda vector:extract_values_from_vector(vector), ArrayType(DoubleType()))
extract = rescaledData.withColumn("extracted_keys", extract_keys_from_vector_udf("features"))
So if the sparsevector looks like:
features=SparseVector(123241, {20672: 4.4233, 37393: 0.0, 109847: 3.7096, 118474: 5.4042}))
extracted_keys in my extract will look like:
[4.4233, 0.0, 3.7096, 5.4042]
My question is, how can I get the keys in the SparseVector dictionary? Such as keys = [20672, 37393, 109847, 118474] ?
I am trying the following code but it won't work
def extract_keys_from_vector(vector):
return vector.indices.tolist()
extract_keys_from_vector_udf = spf.udf(lambda vector:extract_keys_from_vector(vector), ArrayType(DoubleType()))
The result it gave me is: [null,null,null,null]
Can someone help?
Many thanks in advance!
pyspark tf-idf
I conducted a tf-idf transform and now I want to get the keys and values from the result.
I am using the following udf code to get values:
def extract_values_from_vector(vector):
return vector.values.tolist()
extract_values_from_vector_udf = udf(lambda vector:extract_values_from_vector(vector), ArrayType(DoubleType()))
extract = rescaledData.withColumn("extracted_keys", extract_keys_from_vector_udf("features"))
So if the sparsevector looks like:
features=SparseVector(123241, {20672: 4.4233, 37393: 0.0, 109847: 3.7096, 118474: 5.4042}))
extracted_keys in my extract will look like:
[4.4233, 0.0, 3.7096, 5.4042]
My question is, how can I get the keys in the SparseVector dictionary? Such as keys = [20672, 37393, 109847, 118474] ?
I am trying the following code but it won't work
def extract_keys_from_vector(vector):
return vector.indices.tolist()
extract_keys_from_vector_udf = spf.udf(lambda vector:extract_keys_from_vector(vector), ArrayType(DoubleType()))
The result it gave me is: [null,null,null,null]
Can someone help?
Many thanks in advance!
pyspark tf-idf
pyspark tf-idf
edited Jan 1 at 16:44
A story-teller
asked Jan 1 at 16:34
A story-tellerA story-teller
347
347
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
2
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be ofIntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13
add a comment |
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
2
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be ofIntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
2
2
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be of
IntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be of
IntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53997118%2fhow-to-get-keys-from-pyspark-sparsevector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53997118%2fhow-to-get-keys-from-pyspark-sparsevector%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I don't think so, that's RDD
– A story-teller
Jan 2 at 4:11
2
@Astory-teller indices are integer values but your UDF returns an array of doubles. I guess you just want it to be of
IntegerType()
– Sergey Khudyakov
Jan 2 at 14:39
@Sergey Khudyakov I think you are right! Do you want to answer the question and I can mark accept?
– A story-teller
Jan 3 at 20:13