Axiom of Foundation and transitive sets.












1















Assuming the Axiom of Foundation, show that every non-empty transtive set contains $0$ and show that every non-singleton transitive set contains $1$.




It's straightfoward to show the first part.
Suppose that $t$ is a nonempty transitive set.
By the Axiom of Foundation, there is $r in t$ such that $r cap t = emptyset$.
Now, as $r in t$ and $t$ is transitive, we have that $r subseteq t$ so that $emptyset subseteq r subseteq r cap t = emptyset$, so $emptyset = r in t$.



I'm stuck on the second part. If we suppose further that $t$ has at least two elements, then we may consider $q in t$ with $q neq emptyset$.
We can find $p in q$ with $q cap p = emptyset$, but I don't know where to go from there.










share|cite|improve this question



























    1















    Assuming the Axiom of Foundation, show that every non-empty transtive set contains $0$ and show that every non-singleton transitive set contains $1$.




    It's straightfoward to show the first part.
    Suppose that $t$ is a nonempty transitive set.
    By the Axiom of Foundation, there is $r in t$ such that $r cap t = emptyset$.
    Now, as $r in t$ and $t$ is transitive, we have that $r subseteq t$ so that $emptyset subseteq r subseteq r cap t = emptyset$, so $emptyset = r in t$.



    I'm stuck on the second part. If we suppose further that $t$ has at least two elements, then we may consider $q in t$ with $q neq emptyset$.
    We can find $p in q$ with $q cap p = emptyset$, but I don't know where to go from there.










    share|cite|improve this question

























      1












      1








      1








      Assuming the Axiom of Foundation, show that every non-empty transtive set contains $0$ and show that every non-singleton transitive set contains $1$.




      It's straightfoward to show the first part.
      Suppose that $t$ is a nonempty transitive set.
      By the Axiom of Foundation, there is $r in t$ such that $r cap t = emptyset$.
      Now, as $r in t$ and $t$ is transitive, we have that $r subseteq t$ so that $emptyset subseteq r subseteq r cap t = emptyset$, so $emptyset = r in t$.



      I'm stuck on the second part. If we suppose further that $t$ has at least two elements, then we may consider $q in t$ with $q neq emptyset$.
      We can find $p in q$ with $q cap p = emptyset$, but I don't know where to go from there.










      share|cite|improve this question














      Assuming the Axiom of Foundation, show that every non-empty transtive set contains $0$ and show that every non-singleton transitive set contains $1$.




      It's straightfoward to show the first part.
      Suppose that $t$ is a nonempty transitive set.
      By the Axiom of Foundation, there is $r in t$ such that $r cap t = emptyset$.
      Now, as $r in t$ and $t$ is transitive, we have that $r subseteq t$ so that $emptyset subseteq r subseteq r cap t = emptyset$, so $emptyset = r in t$.



      I'm stuck on the second part. If we suppose further that $t$ has at least two elements, then we may consider $q in t$ with $q neq emptyset$.
      We can find $p in q$ with $q cap p = emptyset$, but I don't know where to go from there.







      elementary-set-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Nov 20 '18 at 22:06









      Sprinkle

      39119




      39119






















          1 Answer
          1






          active

          oldest

          votes


















          0














          Let t be a multipoint transitive set.



          As discused $phi$ in t.



          r = t - {$phi$} is not empty.

          By regularity, exists a in r with empty a $cap$ r.

          a in t; a subset t; if x in a, then x = $phi$.

          As a is not empty, a = {$phi$}, 1 in t QED.



          $phi$ is empty set.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006967%2faxiom-of-foundation-and-transitive-sets%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0














            Let t be a multipoint transitive set.



            As discused $phi$ in t.



            r = t - {$phi$} is not empty.

            By regularity, exists a in r with empty a $cap$ r.

            a in t; a subset t; if x in a, then x = $phi$.

            As a is not empty, a = {$phi$}, 1 in t QED.



            $phi$ is empty set.






            share|cite|improve this answer


























              0














              Let t be a multipoint transitive set.



              As discused $phi$ in t.



              r = t - {$phi$} is not empty.

              By regularity, exists a in r with empty a $cap$ r.

              a in t; a subset t; if x in a, then x = $phi$.

              As a is not empty, a = {$phi$}, 1 in t QED.



              $phi$ is empty set.






              share|cite|improve this answer
























                0












                0








                0






                Let t be a multipoint transitive set.



                As discused $phi$ in t.



                r = t - {$phi$} is not empty.

                By regularity, exists a in r with empty a $cap$ r.

                a in t; a subset t; if x in a, then x = $phi$.

                As a is not empty, a = {$phi$}, 1 in t QED.



                $phi$ is empty set.






                share|cite|improve this answer












                Let t be a multipoint transitive set.



                As discused $phi$ in t.



                r = t - {$phi$} is not empty.

                By regularity, exists a in r with empty a $cap$ r.

                a in t; a subset t; if x in a, then x = $phi$.

                As a is not empty, a = {$phi$}, 1 in t QED.



                $phi$ is empty set.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Nov 23 '18 at 5:41









                William Elliot

                7,3082620




                7,3082620






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006967%2faxiom-of-foundation-and-transitive-sets%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    SQL update select statement

                    'app-layout' is not a known element: how to share Component with different Modules