When to include $r$ when converting to polar coordinates?
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
add a comment |
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13
add a comment |
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
When evaluating integrals, if you convert to polar/cylindrical coordinates, I know you have to include $r$ ($r, dr , dtheta$).
However, when you parametrize first (for line integrals, or surface integrals) do you still include $r$? For example, I'll parametrize $x = r costheta$, $y = r sintheta$, $z = z$. Plug in as $F(r(r,theta))$, and do the cross product of the partial derivatives. Is the extra $r$ already included in this process?
calculus multivariable-calculus
calculus multivariable-calculus
edited Nov 20 '18 at 22:11
Masacroso
13k41746
13k41746
asked Nov 20 '18 at 22:03
LtLame
63
63
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13
add a comment |
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13
add a comment |
1 Answer
1
active
oldest
votes
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006965%2fwhen-to-include-r-when-converting-to-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
add a comment |
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
In the conversion $dxdy=rdrdtheta$, the factor of $r$ is a Jacobian determinant. This generalises the result $du=u'dx$ in a single-integral substitution. You always need to include Jacobians; the real question is what the Jacobian should be for a particular problem. In general, a switch between two sets of variables $u_i,,v_j$ has $d^n u = |det J|d^n v$ with $J_{ij}:=frac{partial u_i}{partial v_j}$. I recommend proving $dxdy=rdrdtheta$ as an exercise.
answered Nov 20 '18 at 22:18
J.G.
23k22137
23k22137
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006965%2fwhen-to-include-r-when-converting-to-polar-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
put an example please, there are a lot of different kinds of integrals
– Masacroso
Nov 20 '18 at 22:13