Correlation between the first and a random bit of an ergodic binary sequence
$begingroup$
Let $x=(x_1,x_2, ldots) $ be an ergodic random sequence of bits. Let $k $ be a positive integer, and $j $ a random integer uniformly distributed in ${1,ldots, k} $. Is it alway the case that $Cov (x_1,x_i) geq 0$?
Specifically, does the above hold when $x $ is a random rotation of a fixed periodic binary sequence?
probability
$endgroup$
add a comment |
$begingroup$
Let $x=(x_1,x_2, ldots) $ be an ergodic random sequence of bits. Let $k $ be a positive integer, and $j $ a random integer uniformly distributed in ${1,ldots, k} $. Is it alway the case that $Cov (x_1,x_i) geq 0$?
Specifically, does the above hold when $x $ is a random rotation of a fixed periodic binary sequence?
probability
$endgroup$
$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13
add a comment |
$begingroup$
Let $x=(x_1,x_2, ldots) $ be an ergodic random sequence of bits. Let $k $ be a positive integer, and $j $ a random integer uniformly distributed in ${1,ldots, k} $. Is it alway the case that $Cov (x_1,x_i) geq 0$?
Specifically, does the above hold when $x $ is a random rotation of a fixed periodic binary sequence?
probability
$endgroup$
Let $x=(x_1,x_2, ldots) $ be an ergodic random sequence of bits. Let $k $ be a positive integer, and $j $ a random integer uniformly distributed in ${1,ldots, k} $. Is it alway the case that $Cov (x_1,x_i) geq 0$?
Specifically, does the above hold when $x $ is a random rotation of a fixed periodic binary sequence?
probability
probability
edited Jan 25 at 18:54
Ron
asked Jan 25 at 18:23
RonRon
25116
25116
$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13
add a comment |
$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13
$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13
$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087438%2fcorrelation-between-the-first-and-a-random-bit-of-an-ergodic-binary-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087438%2fcorrelation-between-the-first-and-a-random-bit-of-an-ergodic-binary-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
I've posted the same question on MathOverflow.
$endgroup$
– Ron
Jan 25 at 22:13