Density argument
$begingroup$
This is a problem that I met when studying density things:
Let ${ a_n }$ be a real-valued sequence. Then the following things are equivalent:
(1) $lim_{n rightarrow infty } frac{1}{n}sum_{i=1}^{n}a_n=0$
(2) There exists some $J subset mathbb{N}$ with natural density $0$, such that $lim_{n rightarrow infty, n notin J} a_n=0$
I'm a beginner on Density arguments, so can somebody help?
density-function
$endgroup$
add a comment |
$begingroup$
This is a problem that I met when studying density things:
Let ${ a_n }$ be a real-valued sequence. Then the following things are equivalent:
(1) $lim_{n rightarrow infty } frac{1}{n}sum_{i=1}^{n}a_n=0$
(2) There exists some $J subset mathbb{N}$ with natural density $0$, such that $lim_{n rightarrow infty, n notin J} a_n=0$
I'm a beginner on Density arguments, so can somebody help?
density-function
$endgroup$
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41
add a comment |
$begingroup$
This is a problem that I met when studying density things:
Let ${ a_n }$ be a real-valued sequence. Then the following things are equivalent:
(1) $lim_{n rightarrow infty } frac{1}{n}sum_{i=1}^{n}a_n=0$
(2) There exists some $J subset mathbb{N}$ with natural density $0$, such that $lim_{n rightarrow infty, n notin J} a_n=0$
I'm a beginner on Density arguments, so can somebody help?
density-function
$endgroup$
This is a problem that I met when studying density things:
Let ${ a_n }$ be a real-valued sequence. Then the following things are equivalent:
(1) $lim_{n rightarrow infty } frac{1}{n}sum_{i=1}^{n}a_n=0$
(2) There exists some $J subset mathbb{N}$ with natural density $0$, such that $lim_{n rightarrow infty, n notin J} a_n=0$
I'm a beginner on Density arguments, so can somebody help?
density-function
density-function
asked Jan 28 at 11:34


lminsllminsl
886
886
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41
add a comment |
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The statement is wrong. If $a_n=(-1)^{n}$ then 1) holds but 2) doesn't.
However we have the following:
Let ${a_{n}}⊂ℝ$ be bounded. Then the following are equivalent:
a) $(1/n)sumlimits_{k=1}^{n}|a_{k}|→0$
b) there exists $Asubset mathbb N$ such that $lim_{nin A,n to infty} a_{n}=0$ and $card(A∩{1,2,...,n})/n)→0$ as n→∞
Here is a stronger result:
Let ${a_{n}}subset
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
$ be bounded and $1leq p<infty $. Then the following are equivalent:
a) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow
0$
b) there exists $Asubset
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
$ such that $underset{nnotin A,nrightarrow infty }{lim }a_{n}=0$ and $%
frac{#{Acap {1,2,...,n})}{n}rightarrow 0$ as $nrightarrow infty $
c) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert
^{p}rightarrow 0$
It suffices to show that a) and b) are equivalent. Suppose $frac{1}{n}%
sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow 0$. For $%
k=1,2,...$ let $I_{k}={ngeq 1:leftvert a_{n}rightvert geq frac{1}{k}%
}$. Claim: $frac{#{I_{k}cap lbrack 1,n]}}{n}rightarrow 0$ as $%
nrightarrow infty $ for each $k$. Indeed, this follows from the inequality
$frac{1}{n}sumlimits_{j=1}^{n}leftvert a_{j}rightvert geq frac{%
#{I_{k}cap lbrack 1,n]}}{nk}$. There exist integers $n_{0}<n_{1}<...$
such that $ngeq n_{k}$ implies $frac{#{I_{k+1}cap lbrack 1,n]}}{n}<%
frac{1}{k+1}$. Let $I=bigcuplimits_{k=0}^{infty }{I_{k+1}cap lbrack
n_{k},n_{k+1})}$. Let $n_{k}leq n<n_{k+1}$. Then $Icap lbrack
1,n]subset {I_{k}cap lbrack 1,n_{k}]}cup {I_{k+1}cap lbrack 1,n]}$%
. Hence $frac{#{Icap lbrack 1,n]}}{n}leq frac{#{I_{k}cap lbrack
1,n_{k}]}}{n}+frac{#{I_{k+1}cap lbrack 1,n]}}{n}<frac{n_{k}}{n}frac{%
1}{k}+frac{1}{k+1}leq frac{1}{k}+frac{1}{k+1}$ if $ngeq n_{k}$. We have
proved that $frac{#{Icap lbrack 0,n)}}{n}rightarrow 0$ as $%
nrightarrow infty $. If $n>n_{k}$ and $nnotin I$ then $nnotin I_{k+1}$
( for, otherwise, there exists $rho geq k$ such that $n_{rho }leq
n<n_{rho +1}$ and $nin I_{k+1}subset I_{rho +1}$ so $nin I_{rho
+1}cap lbrack n_{rho },n_{rho +1)}subset I$ which is a contradiction).
Thus $leftvert a_{n}rightvert <frac{1}{k+1}$ for $n>n_{k}$, $nnotin I$
completing the proof of a) implies b). For the converse part let $leftvert
a_{n}rightvert leq C$ and let $epsilon >0$. There exists $n_{epsilon }$
such that $leftvert a_{n}rightvert <epsilon $ if $n>n_{epsilon }$ and $%
nnotin I$. Also there exists $m_{epsilon }$ such that $frac{#{Icap
lbrack 0,n)}}{n}<epsilon $ if $n>m_{epsilon }$. For $n>max
{n_{epsilon },m_{epsilon }}$ we have $frac{1}{n}sum%
limits_{k=0}^{n-1}leftvert a_{k}rightvert <epsilon +epsilon C$.
$endgroup$
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090745%2fdensity-argument%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The statement is wrong. If $a_n=(-1)^{n}$ then 1) holds but 2) doesn't.
However we have the following:
Let ${a_{n}}⊂ℝ$ be bounded. Then the following are equivalent:
a) $(1/n)sumlimits_{k=1}^{n}|a_{k}|→0$
b) there exists $Asubset mathbb N$ such that $lim_{nin A,n to infty} a_{n}=0$ and $card(A∩{1,2,...,n})/n)→0$ as n→∞
Here is a stronger result:
Let ${a_{n}}subset
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
$ be bounded and $1leq p<infty $. Then the following are equivalent:
a) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow
0$
b) there exists $Asubset
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
$ such that $underset{nnotin A,nrightarrow infty }{lim }a_{n}=0$ and $%
frac{#{Acap {1,2,...,n})}{n}rightarrow 0$ as $nrightarrow infty $
c) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert
^{p}rightarrow 0$
It suffices to show that a) and b) are equivalent. Suppose $frac{1}{n}%
sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow 0$. For $%
k=1,2,...$ let $I_{k}={ngeq 1:leftvert a_{n}rightvert geq frac{1}{k}%
}$. Claim: $frac{#{I_{k}cap lbrack 1,n]}}{n}rightarrow 0$ as $%
nrightarrow infty $ for each $k$. Indeed, this follows from the inequality
$frac{1}{n}sumlimits_{j=1}^{n}leftvert a_{j}rightvert geq frac{%
#{I_{k}cap lbrack 1,n]}}{nk}$. There exist integers $n_{0}<n_{1}<...$
such that $ngeq n_{k}$ implies $frac{#{I_{k+1}cap lbrack 1,n]}}{n}<%
frac{1}{k+1}$. Let $I=bigcuplimits_{k=0}^{infty }{I_{k+1}cap lbrack
n_{k},n_{k+1})}$. Let $n_{k}leq n<n_{k+1}$. Then $Icap lbrack
1,n]subset {I_{k}cap lbrack 1,n_{k}]}cup {I_{k+1}cap lbrack 1,n]}$%
. Hence $frac{#{Icap lbrack 1,n]}}{n}leq frac{#{I_{k}cap lbrack
1,n_{k}]}}{n}+frac{#{I_{k+1}cap lbrack 1,n]}}{n}<frac{n_{k}}{n}frac{%
1}{k}+frac{1}{k+1}leq frac{1}{k}+frac{1}{k+1}$ if $ngeq n_{k}$. We have
proved that $frac{#{Icap lbrack 0,n)}}{n}rightarrow 0$ as $%
nrightarrow infty $. If $n>n_{k}$ and $nnotin I$ then $nnotin I_{k+1}$
( for, otherwise, there exists $rho geq k$ such that $n_{rho }leq
n<n_{rho +1}$ and $nin I_{k+1}subset I_{rho +1}$ so $nin I_{rho
+1}cap lbrack n_{rho },n_{rho +1)}subset I$ which is a contradiction).
Thus $leftvert a_{n}rightvert <frac{1}{k+1}$ for $n>n_{k}$, $nnotin I$
completing the proof of a) implies b). For the converse part let $leftvert
a_{n}rightvert leq C$ and let $epsilon >0$. There exists $n_{epsilon }$
such that $leftvert a_{n}rightvert <epsilon $ if $n>n_{epsilon }$ and $%
nnotin I$. Also there exists $m_{epsilon }$ such that $frac{#{Icap
lbrack 0,n)}}{n}<epsilon $ if $n>m_{epsilon }$. For $n>max
{n_{epsilon },m_{epsilon }}$ we have $frac{1}{n}sum%
limits_{k=0}^{n-1}leftvert a_{k}rightvert <epsilon +epsilon C$.
$endgroup$
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
add a comment |
$begingroup$
The statement is wrong. If $a_n=(-1)^{n}$ then 1) holds but 2) doesn't.
However we have the following:
Let ${a_{n}}⊂ℝ$ be bounded. Then the following are equivalent:
a) $(1/n)sumlimits_{k=1}^{n}|a_{k}|→0$
b) there exists $Asubset mathbb N$ such that $lim_{nin A,n to infty} a_{n}=0$ and $card(A∩{1,2,...,n})/n)→0$ as n→∞
Here is a stronger result:
Let ${a_{n}}subset
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
$ be bounded and $1leq p<infty $. Then the following are equivalent:
a) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow
0$
b) there exists $Asubset
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
$ such that $underset{nnotin A,nrightarrow infty }{lim }a_{n}=0$ and $%
frac{#{Acap {1,2,...,n})}{n}rightarrow 0$ as $nrightarrow infty $
c) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert
^{p}rightarrow 0$
It suffices to show that a) and b) are equivalent. Suppose $frac{1}{n}%
sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow 0$. For $%
k=1,2,...$ let $I_{k}={ngeq 1:leftvert a_{n}rightvert geq frac{1}{k}%
}$. Claim: $frac{#{I_{k}cap lbrack 1,n]}}{n}rightarrow 0$ as $%
nrightarrow infty $ for each $k$. Indeed, this follows from the inequality
$frac{1}{n}sumlimits_{j=1}^{n}leftvert a_{j}rightvert geq frac{%
#{I_{k}cap lbrack 1,n]}}{nk}$. There exist integers $n_{0}<n_{1}<...$
such that $ngeq n_{k}$ implies $frac{#{I_{k+1}cap lbrack 1,n]}}{n}<%
frac{1}{k+1}$. Let $I=bigcuplimits_{k=0}^{infty }{I_{k+1}cap lbrack
n_{k},n_{k+1})}$. Let $n_{k}leq n<n_{k+1}$. Then $Icap lbrack
1,n]subset {I_{k}cap lbrack 1,n_{k}]}cup {I_{k+1}cap lbrack 1,n]}$%
. Hence $frac{#{Icap lbrack 1,n]}}{n}leq frac{#{I_{k}cap lbrack
1,n_{k}]}}{n}+frac{#{I_{k+1}cap lbrack 1,n]}}{n}<frac{n_{k}}{n}frac{%
1}{k}+frac{1}{k+1}leq frac{1}{k}+frac{1}{k+1}$ if $ngeq n_{k}$. We have
proved that $frac{#{Icap lbrack 0,n)}}{n}rightarrow 0$ as $%
nrightarrow infty $. If $n>n_{k}$ and $nnotin I$ then $nnotin I_{k+1}$
( for, otherwise, there exists $rho geq k$ such that $n_{rho }leq
n<n_{rho +1}$ and $nin I_{k+1}subset I_{rho +1}$ so $nin I_{rho
+1}cap lbrack n_{rho },n_{rho +1)}subset I$ which is a contradiction).
Thus $leftvert a_{n}rightvert <frac{1}{k+1}$ for $n>n_{k}$, $nnotin I$
completing the proof of a) implies b). For the converse part let $leftvert
a_{n}rightvert leq C$ and let $epsilon >0$. There exists $n_{epsilon }$
such that $leftvert a_{n}rightvert <epsilon $ if $n>n_{epsilon }$ and $%
nnotin I$. Also there exists $m_{epsilon }$ such that $frac{#{Icap
lbrack 0,n)}}{n}<epsilon $ if $n>m_{epsilon }$. For $n>max
{n_{epsilon },m_{epsilon }}$ we have $frac{1}{n}sum%
limits_{k=0}^{n-1}leftvert a_{k}rightvert <epsilon +epsilon C$.
$endgroup$
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
add a comment |
$begingroup$
The statement is wrong. If $a_n=(-1)^{n}$ then 1) holds but 2) doesn't.
However we have the following:
Let ${a_{n}}⊂ℝ$ be bounded. Then the following are equivalent:
a) $(1/n)sumlimits_{k=1}^{n}|a_{k}|→0$
b) there exists $Asubset mathbb N$ such that $lim_{nin A,n to infty} a_{n}=0$ and $card(A∩{1,2,...,n})/n)→0$ as n→∞
Here is a stronger result:
Let ${a_{n}}subset
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
$ be bounded and $1leq p<infty $. Then the following are equivalent:
a) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow
0$
b) there exists $Asubset
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
$ such that $underset{nnotin A,nrightarrow infty }{lim }a_{n}=0$ and $%
frac{#{Acap {1,2,...,n})}{n}rightarrow 0$ as $nrightarrow infty $
c) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert
^{p}rightarrow 0$
It suffices to show that a) and b) are equivalent. Suppose $frac{1}{n}%
sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow 0$. For $%
k=1,2,...$ let $I_{k}={ngeq 1:leftvert a_{n}rightvert geq frac{1}{k}%
}$. Claim: $frac{#{I_{k}cap lbrack 1,n]}}{n}rightarrow 0$ as $%
nrightarrow infty $ for each $k$. Indeed, this follows from the inequality
$frac{1}{n}sumlimits_{j=1}^{n}leftvert a_{j}rightvert geq frac{%
#{I_{k}cap lbrack 1,n]}}{nk}$. There exist integers $n_{0}<n_{1}<...$
such that $ngeq n_{k}$ implies $frac{#{I_{k+1}cap lbrack 1,n]}}{n}<%
frac{1}{k+1}$. Let $I=bigcuplimits_{k=0}^{infty }{I_{k+1}cap lbrack
n_{k},n_{k+1})}$. Let $n_{k}leq n<n_{k+1}$. Then $Icap lbrack
1,n]subset {I_{k}cap lbrack 1,n_{k}]}cup {I_{k+1}cap lbrack 1,n]}$%
. Hence $frac{#{Icap lbrack 1,n]}}{n}leq frac{#{I_{k}cap lbrack
1,n_{k}]}}{n}+frac{#{I_{k+1}cap lbrack 1,n]}}{n}<frac{n_{k}}{n}frac{%
1}{k}+frac{1}{k+1}leq frac{1}{k}+frac{1}{k+1}$ if $ngeq n_{k}$. We have
proved that $frac{#{Icap lbrack 0,n)}}{n}rightarrow 0$ as $%
nrightarrow infty $. If $n>n_{k}$ and $nnotin I$ then $nnotin I_{k+1}$
( for, otherwise, there exists $rho geq k$ such that $n_{rho }leq
n<n_{rho +1}$ and $nin I_{k+1}subset I_{rho +1}$ so $nin I_{rho
+1}cap lbrack n_{rho },n_{rho +1)}subset I$ which is a contradiction).
Thus $leftvert a_{n}rightvert <frac{1}{k+1}$ for $n>n_{k}$, $nnotin I$
completing the proof of a) implies b). For the converse part let $leftvert
a_{n}rightvert leq C$ and let $epsilon >0$. There exists $n_{epsilon }$
such that $leftvert a_{n}rightvert <epsilon $ if $n>n_{epsilon }$ and $%
nnotin I$. Also there exists $m_{epsilon }$ such that $frac{#{Icap
lbrack 0,n)}}{n}<epsilon $ if $n>m_{epsilon }$. For $n>max
{n_{epsilon },m_{epsilon }}$ we have $frac{1}{n}sum%
limits_{k=0}^{n-1}leftvert a_{k}rightvert <epsilon +epsilon C$.
$endgroup$
The statement is wrong. If $a_n=(-1)^{n}$ then 1) holds but 2) doesn't.
However we have the following:
Let ${a_{n}}⊂ℝ$ be bounded. Then the following are equivalent:
a) $(1/n)sumlimits_{k=1}^{n}|a_{k}|→0$
b) there exists $Asubset mathbb N$ such that $lim_{nin A,n to infty} a_{n}=0$ and $card(A∩{1,2,...,n})/n)→0$ as n→∞
Here is a stronger result:
Let ${a_{n}}subset
%TCIMACRO{U{211d} }%
%BeginExpansion
mathbb{R}
%EndExpansion
$ be bounded and $1leq p<infty $. Then the following are equivalent:
a) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow
0$
b) there exists $Asubset
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
$ such that $underset{nnotin A,nrightarrow infty }{lim }a_{n}=0$ and $%
frac{#{Acap {1,2,...,n})}{n}rightarrow 0$ as $nrightarrow infty $
c) $frac{1}{n}sumlimits_{k=1}^{n}leftvert a_{k}rightvert
^{p}rightarrow 0$
It suffices to show that a) and b) are equivalent. Suppose $frac{1}{n}%
sumlimits_{k=1}^{n}leftvert a_{k}rightvert rightarrow 0$. For $%
k=1,2,...$ let $I_{k}={ngeq 1:leftvert a_{n}rightvert geq frac{1}{k}%
}$. Claim: $frac{#{I_{k}cap lbrack 1,n]}}{n}rightarrow 0$ as $%
nrightarrow infty $ for each $k$. Indeed, this follows from the inequality
$frac{1}{n}sumlimits_{j=1}^{n}leftvert a_{j}rightvert geq frac{%
#{I_{k}cap lbrack 1,n]}}{nk}$. There exist integers $n_{0}<n_{1}<...$
such that $ngeq n_{k}$ implies $frac{#{I_{k+1}cap lbrack 1,n]}}{n}<%
frac{1}{k+1}$. Let $I=bigcuplimits_{k=0}^{infty }{I_{k+1}cap lbrack
n_{k},n_{k+1})}$. Let $n_{k}leq n<n_{k+1}$. Then $Icap lbrack
1,n]subset {I_{k}cap lbrack 1,n_{k}]}cup {I_{k+1}cap lbrack 1,n]}$%
. Hence $frac{#{Icap lbrack 1,n]}}{n}leq frac{#{I_{k}cap lbrack
1,n_{k}]}}{n}+frac{#{I_{k+1}cap lbrack 1,n]}}{n}<frac{n_{k}}{n}frac{%
1}{k}+frac{1}{k+1}leq frac{1}{k}+frac{1}{k+1}$ if $ngeq n_{k}$. We have
proved that $frac{#{Icap lbrack 0,n)}}{n}rightarrow 0$ as $%
nrightarrow infty $. If $n>n_{k}$ and $nnotin I$ then $nnotin I_{k+1}$
( for, otherwise, there exists $rho geq k$ such that $n_{rho }leq
n<n_{rho +1}$ and $nin I_{k+1}subset I_{rho +1}$ so $nin I_{rho
+1}cap lbrack n_{rho },n_{rho +1)}subset I$ which is a contradiction).
Thus $leftvert a_{n}rightvert <frac{1}{k+1}$ for $n>n_{k}$, $nnotin I$
completing the proof of a) implies b). For the converse part let $leftvert
a_{n}rightvert leq C$ and let $epsilon >0$. There exists $n_{epsilon }$
such that $leftvert a_{n}rightvert <epsilon $ if $n>n_{epsilon }$ and $%
nnotin I$. Also there exists $m_{epsilon }$ such that $frac{#{Icap
lbrack 0,n)}}{n}<epsilon $ if $n>m_{epsilon }$. For $n>max
{n_{epsilon },m_{epsilon }}$ we have $frac{1}{n}sum%
limits_{k=0}^{n-1}leftvert a_{k}rightvert <epsilon +epsilon C$.
edited Jan 28 at 23:50
answered Jan 28 at 11:48


Kavi Rama MurthyKavi Rama Murthy
70.7k53170
70.7k53170
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
add a comment |
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
Oh; I forgot to type the "bounded" thing.. Could you provide a proof?
$endgroup$
– lminsl
Jan 28 at 14:45
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
$begingroup$
@lminsl I have provided a detailed proof.
$endgroup$
– Kavi Rama Murthy
Jan 28 at 23:51
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090745%2fdensity-argument%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$(a_n)$ is just a real sequence? It fails when $a_n =(-1)^n$.
$endgroup$
– Song
Jan 28 at 11:41