Evaluating $sum_{n=1}^infty frac{sin(nx)}{n}$ without integrating $sum_{n=1}^infty e^{nx}$












2












$begingroup$


I am looking for alternative solutions for finding this sum
$$sum_{n=1}^infty frac{sin(nx)}{n} $$





My solution proceeds by integrating $$sum_{n=1}^infty e^{nx}=frac{e^{ix}}{1-e^{ix}}$$
With suitable limits and then taking the imaginary part of it.










share|cite|improve this question











$endgroup$

















    2












    $begingroup$


    I am looking for alternative solutions for finding this sum
    $$sum_{n=1}^infty frac{sin(nx)}{n} $$





    My solution proceeds by integrating $$sum_{n=1}^infty e^{nx}=frac{e^{ix}}{1-e^{ix}}$$
    With suitable limits and then taking the imaginary part of it.










    share|cite|improve this question











    $endgroup$















      2












      2








      2


      1



      $begingroup$


      I am looking for alternative solutions for finding this sum
      $$sum_{n=1}^infty frac{sin(nx)}{n} $$





      My solution proceeds by integrating $$sum_{n=1}^infty e^{nx}=frac{e^{ix}}{1-e^{ix}}$$
      With suitable limits and then taking the imaginary part of it.










      share|cite|improve this question











      $endgroup$




      I am looking for alternative solutions for finding this sum
      $$sum_{n=1}^infty frac{sin(nx)}{n} $$





      My solution proceeds by integrating $$sum_{n=1}^infty e^{nx}=frac{e^{ix}}{1-e^{ix}}$$
      With suitable limits and then taking the imaginary part of it.







      integration sequences-and-series trigonometry summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 24 at 12:41









      Blue

      49.1k870156




      49.1k870156










      asked Jan 24 at 11:03









      KarthikKarthik

      13212




      13212






















          1 Answer
          1






          active

          oldest

          votes


















          7












          $begingroup$

          Note thatbegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=operatorname{Im}left(sum_{n=1}^inftyfrac{e^{inx}}nright)\&=operatorname{Im}left(sum_{n=1}^inftyfrac{left(e^{ix}right)^n}nright).end{align}If $xinmathbb{R}setminus{0}$, then $e^{ix}in S^1setminus{1}$, and therefore$$sum_{n=1}^inftyfrac{left(e^{ix}right)^n}n=logleft(frac1{1-e^{ix}}right),$$(where $log$ is the principal branch of the logarithm), sincebegin{align}log(1+x)=x-frac{x^2}2+frac{x^3}3-frac{x^4}x+cdots&implieslog(1-x)=-left(x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsright)\&implieslogleft(frac1{1-x}right)=x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsend{align}Thereforebegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=-arctanleft(frac{-sin x}{1-cos(x)}right)\&=arctanleft(cotleft(frac x2right)right).end{align}Of course, if $x=0$, then this equality also holds.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085741%2fevaluating-sum-n-1-infty-frac-sinnxn-without-integrating-sum-n-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            7












            $begingroup$

            Note thatbegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=operatorname{Im}left(sum_{n=1}^inftyfrac{e^{inx}}nright)\&=operatorname{Im}left(sum_{n=1}^inftyfrac{left(e^{ix}right)^n}nright).end{align}If $xinmathbb{R}setminus{0}$, then $e^{ix}in S^1setminus{1}$, and therefore$$sum_{n=1}^inftyfrac{left(e^{ix}right)^n}n=logleft(frac1{1-e^{ix}}right),$$(where $log$ is the principal branch of the logarithm), sincebegin{align}log(1+x)=x-frac{x^2}2+frac{x^3}3-frac{x^4}x+cdots&implieslog(1-x)=-left(x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsright)\&implieslogleft(frac1{1-x}right)=x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsend{align}Thereforebegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=-arctanleft(frac{-sin x}{1-cos(x)}right)\&=arctanleft(cotleft(frac x2right)right).end{align}Of course, if $x=0$, then this equality also holds.






            share|cite|improve this answer











            $endgroup$


















              7












              $begingroup$

              Note thatbegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=operatorname{Im}left(sum_{n=1}^inftyfrac{e^{inx}}nright)\&=operatorname{Im}left(sum_{n=1}^inftyfrac{left(e^{ix}right)^n}nright).end{align}If $xinmathbb{R}setminus{0}$, then $e^{ix}in S^1setminus{1}$, and therefore$$sum_{n=1}^inftyfrac{left(e^{ix}right)^n}n=logleft(frac1{1-e^{ix}}right),$$(where $log$ is the principal branch of the logarithm), sincebegin{align}log(1+x)=x-frac{x^2}2+frac{x^3}3-frac{x^4}x+cdots&implieslog(1-x)=-left(x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsright)\&implieslogleft(frac1{1-x}right)=x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsend{align}Thereforebegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=-arctanleft(frac{-sin x}{1-cos(x)}right)\&=arctanleft(cotleft(frac x2right)right).end{align}Of course, if $x=0$, then this equality also holds.






              share|cite|improve this answer











              $endgroup$
















                7












                7








                7





                $begingroup$

                Note thatbegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=operatorname{Im}left(sum_{n=1}^inftyfrac{e^{inx}}nright)\&=operatorname{Im}left(sum_{n=1}^inftyfrac{left(e^{ix}right)^n}nright).end{align}If $xinmathbb{R}setminus{0}$, then $e^{ix}in S^1setminus{1}$, and therefore$$sum_{n=1}^inftyfrac{left(e^{ix}right)^n}n=logleft(frac1{1-e^{ix}}right),$$(where $log$ is the principal branch of the logarithm), sincebegin{align}log(1+x)=x-frac{x^2}2+frac{x^3}3-frac{x^4}x+cdots&implieslog(1-x)=-left(x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsright)\&implieslogleft(frac1{1-x}right)=x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsend{align}Thereforebegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=-arctanleft(frac{-sin x}{1-cos(x)}right)\&=arctanleft(cotleft(frac x2right)right).end{align}Of course, if $x=0$, then this equality also holds.






                share|cite|improve this answer











                $endgroup$



                Note thatbegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=operatorname{Im}left(sum_{n=1}^inftyfrac{e^{inx}}nright)\&=operatorname{Im}left(sum_{n=1}^inftyfrac{left(e^{ix}right)^n}nright).end{align}If $xinmathbb{R}setminus{0}$, then $e^{ix}in S^1setminus{1}$, and therefore$$sum_{n=1}^inftyfrac{left(e^{ix}right)^n}n=logleft(frac1{1-e^{ix}}right),$$(where $log$ is the principal branch of the logarithm), sincebegin{align}log(1+x)=x-frac{x^2}2+frac{x^3}3-frac{x^4}x+cdots&implieslog(1-x)=-left(x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsright)\&implieslogleft(frac1{1-x}right)=x+frac{x^2}2+frac{x^3}3+frac{x^4}4+cdotsend{align}Thereforebegin{align}sum_{n=1}^inftyfrac{sin(nx)}n&=-arctanleft(frac{-sin x}{1-cos(x)}right)\&=arctanleft(cotleft(frac x2right)right).end{align}Of course, if $x=0$, then this equality also holds.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 25 at 13:35

























                answered Jan 24 at 11:11









                José Carlos SantosJosé Carlos Santos

                168k23132237




                168k23132237






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3085741%2fevaluating-sum-n-1-infty-frac-sinnxn-without-integrating-sum-n-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith