How $F_n$ is related to $F_{n+1}$












1












$begingroup$


A researcher has computed the empirical distribution $F_n$ for a data set $x_1, x_2, . . . , x_n$. She discovers an extra data point, $x_{n+1}$. She wonders how $F_n$ is related to $F_{n+1}$, the empirical distribution function for the new data set. Which of the following statements is correct?



a) $F_{n+1}(x)=F_n(x)− frac{1}{n+1}:for:−∞<x<∞$

b) $F_{n+1}(x)=F_n(x)+ frac{1}{n+1}:for:−∞<x<∞$

c) $F_{n+1}(x_n) ≤ F_n(x_n):if:x_n > x_{n+1}$

d) $F_{n+1}(x_2) ≤ F_n(x_2):if:x_2 < x_{n+1}$

e) $F_{n+1}(x) = F_n(x):if:x > x_{n+1}$

f) $F_{n+1}(x) = F_n(x):if:x < x_{n+1}$



I have no clue how to find the correct answer (D) can someone help me?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
    $endgroup$
    – Dietrich Burde
    Jan 22 at 17:55






  • 2




    $begingroup$
    @DietrichBurde Nonsense.
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:13






  • 2




    $begingroup$
    Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:16










  • $begingroup$
    Ok I'll try thanks
    $endgroup$
    – Mark Jacon
    Jan 22 at 18:51
















1












$begingroup$


A researcher has computed the empirical distribution $F_n$ for a data set $x_1, x_2, . . . , x_n$. She discovers an extra data point, $x_{n+1}$. She wonders how $F_n$ is related to $F_{n+1}$, the empirical distribution function for the new data set. Which of the following statements is correct?



a) $F_{n+1}(x)=F_n(x)− frac{1}{n+1}:for:−∞<x<∞$

b) $F_{n+1}(x)=F_n(x)+ frac{1}{n+1}:for:−∞<x<∞$

c) $F_{n+1}(x_n) ≤ F_n(x_n):if:x_n > x_{n+1}$

d) $F_{n+1}(x_2) ≤ F_n(x_2):if:x_2 < x_{n+1}$

e) $F_{n+1}(x) = F_n(x):if:x > x_{n+1}$

f) $F_{n+1}(x) = F_n(x):if:x < x_{n+1}$



I have no clue how to find the correct answer (D) can someone help me?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
    $endgroup$
    – Dietrich Burde
    Jan 22 at 17:55






  • 2




    $begingroup$
    @DietrichBurde Nonsense.
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:13






  • 2




    $begingroup$
    Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:16










  • $begingroup$
    Ok I'll try thanks
    $endgroup$
    – Mark Jacon
    Jan 22 at 18:51














1












1








1


1



$begingroup$


A researcher has computed the empirical distribution $F_n$ for a data set $x_1, x_2, . . . , x_n$. She discovers an extra data point, $x_{n+1}$. She wonders how $F_n$ is related to $F_{n+1}$, the empirical distribution function for the new data set. Which of the following statements is correct?



a) $F_{n+1}(x)=F_n(x)− frac{1}{n+1}:for:−∞<x<∞$

b) $F_{n+1}(x)=F_n(x)+ frac{1}{n+1}:for:−∞<x<∞$

c) $F_{n+1}(x_n) ≤ F_n(x_n):if:x_n > x_{n+1}$

d) $F_{n+1}(x_2) ≤ F_n(x_2):if:x_2 < x_{n+1}$

e) $F_{n+1}(x) = F_n(x):if:x > x_{n+1}$

f) $F_{n+1}(x) = F_n(x):if:x < x_{n+1}$



I have no clue how to find the correct answer (D) can someone help me?










share|cite|improve this question









$endgroup$




A researcher has computed the empirical distribution $F_n$ for a data set $x_1, x_2, . . . , x_n$. She discovers an extra data point, $x_{n+1}$. She wonders how $F_n$ is related to $F_{n+1}$, the empirical distribution function for the new data set. Which of the following statements is correct?



a) $F_{n+1}(x)=F_n(x)− frac{1}{n+1}:for:−∞<x<∞$

b) $F_{n+1}(x)=F_n(x)+ frac{1}{n+1}:for:−∞<x<∞$

c) $F_{n+1}(x_n) ≤ F_n(x_n):if:x_n > x_{n+1}$

d) $F_{n+1}(x_2) ≤ F_n(x_2):if:x_2 < x_{n+1}$

e) $F_{n+1}(x) = F_n(x):if:x > x_{n+1}$

f) $F_{n+1}(x) = F_n(x):if:x < x_{n+1}$



I have no clue how to find the correct answer (D) can someone help me?







probability






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 22 at 17:37









Mark JaconMark Jacon

1127




1127








  • 1




    $begingroup$
    The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
    $endgroup$
    – Dietrich Burde
    Jan 22 at 17:55






  • 2




    $begingroup$
    @DietrichBurde Nonsense.
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:13






  • 2




    $begingroup$
    Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:16










  • $begingroup$
    Ok I'll try thanks
    $endgroup$
    – Mark Jacon
    Jan 22 at 18:51














  • 1




    $begingroup$
    The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
    $endgroup$
    – Dietrich Burde
    Jan 22 at 17:55






  • 2




    $begingroup$
    @DietrichBurde Nonsense.
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:13






  • 2




    $begingroup$
    Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
    $endgroup$
    – Jean-Claude Arbaut
    Jan 22 at 18:16










  • $begingroup$
    Ok I'll try thanks
    $endgroup$
    – Mark Jacon
    Jan 22 at 18:51








1




1




$begingroup$
The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
$endgroup$
– Dietrich Burde
Jan 22 at 17:55




$begingroup$
The relation is $F_n+F_{n+1}=F_{n+2}$, if you ask Fibonacci:)
$endgroup$
– Dietrich Burde
Jan 22 at 17:55




2




2




$begingroup$
@DietrichBurde Nonsense.
$endgroup$
– Jean-Claude Arbaut
Jan 22 at 18:13




$begingroup$
@DietrichBurde Nonsense.
$endgroup$
– Jean-Claude Arbaut
Jan 22 at 18:13




2




2




$begingroup$
Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
$endgroup$
– Jean-Claude Arbaut
Jan 22 at 18:16




$begingroup$
Mark, use the definition: en.wikipedia.org/wiki/Empirical_distribution_function
$endgroup$
– Jean-Claude Arbaut
Jan 22 at 18:16












$begingroup$
Ok I'll try thanks
$endgroup$
– Mark Jacon
Jan 22 at 18:51




$begingroup$
Ok I'll try thanks
$endgroup$
– Mark Jacon
Jan 22 at 18:51










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083443%2fhow-f-n-is-related-to-f-n1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3083443%2fhow-f-n-is-related-to-f-n1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith