How to I solve this limit to -3
$begingroup$
I need help solving this limit $lim limits_{x to -3} frac{4x+12}{3x^3-27x}$.
I know that I am suppose to factor the function and then plug in -3 to calculate the result.
$lim limits_{x to -3} frac{4(x+3)}{3x^3-27x}$. But don't know how to factor $3x^3-27x$.
How do I factor $3x^3-27x$? I'm I on the right path?
Thanks!
limits
$endgroup$
add a comment |
$begingroup$
I need help solving this limit $lim limits_{x to -3} frac{4x+12}{3x^3-27x}$.
I know that I am suppose to factor the function and then plug in -3 to calculate the result.
$lim limits_{x to -3} frac{4(x+3)}{3x^3-27x}$. But don't know how to factor $3x^3-27x$.
How do I factor $3x^3-27x$? I'm I on the right path?
Thanks!
limits
$endgroup$
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47
add a comment |
$begingroup$
I need help solving this limit $lim limits_{x to -3} frac{4x+12}{3x^3-27x}$.
I know that I am suppose to factor the function and then plug in -3 to calculate the result.
$lim limits_{x to -3} frac{4(x+3)}{3x^3-27x}$. But don't know how to factor $3x^3-27x$.
How do I factor $3x^3-27x$? I'm I on the right path?
Thanks!
limits
$endgroup$
I need help solving this limit $lim limits_{x to -3} frac{4x+12}{3x^3-27x}$.
I know that I am suppose to factor the function and then plug in -3 to calculate the result.
$lim limits_{x to -3} frac{4(x+3)}{3x^3-27x}$. But don't know how to factor $3x^3-27x$.
How do I factor $3x^3-27x$? I'm I on the right path?
Thanks!
limits
limits
asked Nov 6 '14 at 10:41
S4M1RS4M1R
394127
394127
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47
add a comment |
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$
begin{split}
mathop {lim }limits_{x to - 3} frac{{4x + 12}}
{{3{x^3} - 27x}} &= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {{x^2} - 9} right)}}\
&= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {x - 3} right)left( {x + 3} right)}} \
&= mathop {lim }limits_{x to - 3} frac{4}
{{3xleft( {x - 3} right)}} \
&= frac{4}
{{3cdotleft( { - 3} right)cdotleft( { - 3 - 3} right)}} = frac{2}
{{27}}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
As your limit is of type $[frac 00]$, you may use l'Hospitale rule, it's the most simple way to find this limit. You should just differentiate numerator and denominator and the limit will be the same. Hope you can continue by yourself from this.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1008806%2fhow-to-i-solve-this-limit-to-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$
begin{split}
mathop {lim }limits_{x to - 3} frac{{4x + 12}}
{{3{x^3} - 27x}} &= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {{x^2} - 9} right)}}\
&= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {x - 3} right)left( {x + 3} right)}} \
&= mathop {lim }limits_{x to - 3} frac{4}
{{3xleft( {x - 3} right)}} \
&= frac{4}
{{3cdotleft( { - 3} right)cdotleft( { - 3 - 3} right)}} = frac{2}
{{27}}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{split}
mathop {lim }limits_{x to - 3} frac{{4x + 12}}
{{3{x^3} - 27x}} &= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {{x^2} - 9} right)}}\
&= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {x - 3} right)left( {x + 3} right)}} \
&= mathop {lim }limits_{x to - 3} frac{4}
{{3xleft( {x - 3} right)}} \
&= frac{4}
{{3cdotleft( { - 3} right)cdotleft( { - 3 - 3} right)}} = frac{2}
{{27}}
end{split}
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{split}
mathop {lim }limits_{x to - 3} frac{{4x + 12}}
{{3{x^3} - 27x}} &= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {{x^2} - 9} right)}}\
&= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {x - 3} right)left( {x + 3} right)}} \
&= mathop {lim }limits_{x to - 3} frac{4}
{{3xleft( {x - 3} right)}} \
&= frac{4}
{{3cdotleft( { - 3} right)cdotleft( { - 3 - 3} right)}} = frac{2}
{{27}}
end{split}
$$
$endgroup$
$$
begin{split}
mathop {lim }limits_{x to - 3} frac{{4x + 12}}
{{3{x^3} - 27x}} &= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {{x^2} - 9} right)}}\
&= mathop {lim }limits_{x to - 3} frac{{4left( {x + 3} right)}}
{{3xleft( {x - 3} right)left( {x + 3} right)}} \
&= mathop {lim }limits_{x to - 3} frac{4}
{{3xleft( {x - 3} right)}} \
&= frac{4}
{{3cdotleft( { - 3} right)cdotleft( { - 3 - 3} right)}} = frac{2}
{{27}}
end{split}
$$
edited Jan 20 at 17:14


Daniele Tampieri
2,3372922
2,3372922
answered Nov 6 '14 at 10:47
User3101User3101
1,301510
1,301510
add a comment |
add a comment |
$begingroup$
As your limit is of type $[frac 00]$, you may use l'Hospitale rule, it's the most simple way to find this limit. You should just differentiate numerator and denominator and the limit will be the same. Hope you can continue by yourself from this.
$endgroup$
add a comment |
$begingroup$
As your limit is of type $[frac 00]$, you may use l'Hospitale rule, it's the most simple way to find this limit. You should just differentiate numerator and denominator and the limit will be the same. Hope you can continue by yourself from this.
$endgroup$
add a comment |
$begingroup$
As your limit is of type $[frac 00]$, you may use l'Hospitale rule, it's the most simple way to find this limit. You should just differentiate numerator and denominator and the limit will be the same. Hope you can continue by yourself from this.
$endgroup$
As your limit is of type $[frac 00]$, you may use l'Hospitale rule, it's the most simple way to find this limit. You should just differentiate numerator and denominator and the limit will be the same. Hope you can continue by yourself from this.
answered Nov 6 '14 at 10:46


Andrei RykhalskiAndrei Rykhalski
1,237614
1,237614
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1008806%2fhow-to-i-solve-this-limit-to-3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$3x^3-27x=3x(x^2-9)=3x(x+3)(x-3)$ could help
$endgroup$
– Claude Leibovici
Nov 6 '14 at 10:47