How to prove $ frac{m!}{n!} geq n^{m-n} $
$begingroup$
How to prove the following:
$$ frac{m!}{n!} geq n^{m-n} $$
In my book it's written: "easy to prove by separately considering the cases $m geq n$ and $m<n$).
I tried using the bounds of Stirling and I got:
$$ frac{m!}{n!} geq frac{sqrt{2pi}}{e} n^{m-n} $$
But this bound is not tight as the first since $frac{sqrt{2pi}}{e}approx 0.92$
Thanks!
inequality factorial
$endgroup$
add a comment |
$begingroup$
How to prove the following:
$$ frac{m!}{n!} geq n^{m-n} $$
In my book it's written: "easy to prove by separately considering the cases $m geq n$ and $m<n$).
I tried using the bounds of Stirling and I got:
$$ frac{m!}{n!} geq frac{sqrt{2pi}}{e} n^{m-n} $$
But this bound is not tight as the first since $frac{sqrt{2pi}}{e}approx 0.92$
Thanks!
inequality factorial
$endgroup$
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47
add a comment |
$begingroup$
How to prove the following:
$$ frac{m!}{n!} geq n^{m-n} $$
In my book it's written: "easy to prove by separately considering the cases $m geq n$ and $m<n$).
I tried using the bounds of Stirling and I got:
$$ frac{m!}{n!} geq frac{sqrt{2pi}}{e} n^{m-n} $$
But this bound is not tight as the first since $frac{sqrt{2pi}}{e}approx 0.92$
Thanks!
inequality factorial
$endgroup$
How to prove the following:
$$ frac{m!}{n!} geq n^{m-n} $$
In my book it's written: "easy to prove by separately considering the cases $m geq n$ and $m<n$).
I tried using the bounds of Stirling and I got:
$$ frac{m!}{n!} geq frac{sqrt{2pi}}{e} n^{m-n} $$
But this bound is not tight as the first since $frac{sqrt{2pi}}{e}approx 0.92$
Thanks!
inequality factorial
inequality factorial
edited Jan 26 at 7:44
user21820
39.7k543157
39.7k543157
asked Jan 25 at 17:24
FelipeFelipe
12510
12510
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47
add a comment |
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Stirling approximation is not useful here. The definition of factorial is all we need.
Note that if $mgeq n$ then
$$m!=underbrace{mcdot (m-1)cdots (n+1)}_{text{$m-n$ factors each one $>n$}}cdot n!$$
On the other hand if $n>m$ then
$$n!=underbrace{ncdot (n-1)cdots (m+1)}_{text{$n-m$ factors each one $leq n$}}cdot m!$$
Can you take it from here?
$endgroup$
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
add a comment |
$begingroup$
For $m ge n$
$$frac{m!}{n!}=(n+1) cdot (n+2) cdots (m-1) cdot m ge n cdot n cdots n = n^{m-n}$$
$endgroup$
add a comment |
$begingroup$
Hint:
For $m ge n$,
$$frac{m!}{n!} = mtimes(m-1)timescdotstimes(n+1) ge ntimes n times cdots n=n^{m-n}$$
What happens for $m le n$?
$$frac{m!}{n!} = frac{1}{ntimes(n-1)timescdotstimes(m+1)} ge ?$$
$endgroup$
add a comment |
$begingroup$
No need for Stirling here, elementary computationw work way better.
When $n leq m$, $m!/n!$ is a product of $n-m$ integers, all greater than $n$, thus $m! geq n^{m-n}n!$.
When $n > m$, $m!/n!$ is a product of reciprocals of $n-m$ integers all $leq n$, so the product is $geq (1/n)^{n-m}=n^{m-n}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087361%2fhow-to-prove-fracmn-geq-nm-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Stirling approximation is not useful here. The definition of factorial is all we need.
Note that if $mgeq n$ then
$$m!=underbrace{mcdot (m-1)cdots (n+1)}_{text{$m-n$ factors each one $>n$}}cdot n!$$
On the other hand if $n>m$ then
$$n!=underbrace{ncdot (n-1)cdots (m+1)}_{text{$n-m$ factors each one $leq n$}}cdot m!$$
Can you take it from here?
$endgroup$
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
add a comment |
$begingroup$
Stirling approximation is not useful here. The definition of factorial is all we need.
Note that if $mgeq n$ then
$$m!=underbrace{mcdot (m-1)cdots (n+1)}_{text{$m-n$ factors each one $>n$}}cdot n!$$
On the other hand if $n>m$ then
$$n!=underbrace{ncdot (n-1)cdots (m+1)}_{text{$n-m$ factors each one $leq n$}}cdot m!$$
Can you take it from here?
$endgroup$
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
add a comment |
$begingroup$
Stirling approximation is not useful here. The definition of factorial is all we need.
Note that if $mgeq n$ then
$$m!=underbrace{mcdot (m-1)cdots (n+1)}_{text{$m-n$ factors each one $>n$}}cdot n!$$
On the other hand if $n>m$ then
$$n!=underbrace{ncdot (n-1)cdots (m+1)}_{text{$n-m$ factors each one $leq n$}}cdot m!$$
Can you take it from here?
$endgroup$
Stirling approximation is not useful here. The definition of factorial is all we need.
Note that if $mgeq n$ then
$$m!=underbrace{mcdot (m-1)cdots (n+1)}_{text{$m-n$ factors each one $>n$}}cdot n!$$
On the other hand if $n>m$ then
$$n!=underbrace{ncdot (n-1)cdots (m+1)}_{text{$n-m$ factors each one $leq n$}}cdot m!$$
Can you take it from here?
edited Jan 25 at 17:34
answered Jan 25 at 17:27


Robert ZRobert Z
101k1070143
101k1070143
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
add a comment |
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
I upvoted you Robert! Thanks!
$endgroup$
– Felipe
Jan 25 at 17:55
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
$begingroup$
Thanks. You are welcome!
$endgroup$
– Robert Z
Jan 25 at 17:57
add a comment |
$begingroup$
For $m ge n$
$$frac{m!}{n!}=(n+1) cdot (n+2) cdots (m-1) cdot m ge n cdot n cdots n = n^{m-n}$$
$endgroup$
add a comment |
$begingroup$
For $m ge n$
$$frac{m!}{n!}=(n+1) cdot (n+2) cdots (m-1) cdot m ge n cdot n cdots n = n^{m-n}$$
$endgroup$
add a comment |
$begingroup$
For $m ge n$
$$frac{m!}{n!}=(n+1) cdot (n+2) cdots (m-1) cdot m ge n cdot n cdots n = n^{m-n}$$
$endgroup$
For $m ge n$
$$frac{m!}{n!}=(n+1) cdot (n+2) cdots (m-1) cdot m ge n cdot n cdots n = n^{m-n}$$
answered Jan 25 at 17:27
CrostulCrostul
28.2k22352
28.2k22352
add a comment |
add a comment |
$begingroup$
Hint:
For $m ge n$,
$$frac{m!}{n!} = mtimes(m-1)timescdotstimes(n+1) ge ntimes n times cdots n=n^{m-n}$$
What happens for $m le n$?
$$frac{m!}{n!} = frac{1}{ntimes(n-1)timescdotstimes(m+1)} ge ?$$
$endgroup$
add a comment |
$begingroup$
Hint:
For $m ge n$,
$$frac{m!}{n!} = mtimes(m-1)timescdotstimes(n+1) ge ntimes n times cdots n=n^{m-n}$$
What happens for $m le n$?
$$frac{m!}{n!} = frac{1}{ntimes(n-1)timescdotstimes(m+1)} ge ?$$
$endgroup$
add a comment |
$begingroup$
Hint:
For $m ge n$,
$$frac{m!}{n!} = mtimes(m-1)timescdotstimes(n+1) ge ntimes n times cdots n=n^{m-n}$$
What happens for $m le n$?
$$frac{m!}{n!} = frac{1}{ntimes(n-1)timescdotstimes(m+1)} ge ?$$
$endgroup$
Hint:
For $m ge n$,
$$frac{m!}{n!} = mtimes(m-1)timescdotstimes(n+1) ge ntimes n times cdots n=n^{m-n}$$
What happens for $m le n$?
$$frac{m!}{n!} = frac{1}{ntimes(n-1)timescdotstimes(m+1)} ge ?$$
answered Jan 25 at 17:27
Math LoverMath Lover
14.1k31437
14.1k31437
add a comment |
add a comment |
$begingroup$
No need for Stirling here, elementary computationw work way better.
When $n leq m$, $m!/n!$ is a product of $n-m$ integers, all greater than $n$, thus $m! geq n^{m-n}n!$.
When $n > m$, $m!/n!$ is a product of reciprocals of $n-m$ integers all $leq n$, so the product is $geq (1/n)^{n-m}=n^{m-n}$.
$endgroup$
add a comment |
$begingroup$
No need for Stirling here, elementary computationw work way better.
When $n leq m$, $m!/n!$ is a product of $n-m$ integers, all greater than $n$, thus $m! geq n^{m-n}n!$.
When $n > m$, $m!/n!$ is a product of reciprocals of $n-m$ integers all $leq n$, so the product is $geq (1/n)^{n-m}=n^{m-n}$.
$endgroup$
add a comment |
$begingroup$
No need for Stirling here, elementary computationw work way better.
When $n leq m$, $m!/n!$ is a product of $n-m$ integers, all greater than $n$, thus $m! geq n^{m-n}n!$.
When $n > m$, $m!/n!$ is a product of reciprocals of $n-m$ integers all $leq n$, so the product is $geq (1/n)^{n-m}=n^{m-n}$.
$endgroup$
No need for Stirling here, elementary computationw work way better.
When $n leq m$, $m!/n!$ is a product of $n-m$ integers, all greater than $n$, thus $m! geq n^{m-n}n!$.
When $n > m$, $m!/n!$ is a product of reciprocals of $n-m$ integers all $leq n$, so the product is $geq (1/n)^{n-m}=n^{m-n}$.
answered Jan 25 at 17:28
MindlackMindlack
4,920211
4,920211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087361%2fhow-to-prove-fracmn-geq-nm-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Closing this question? I don't understand...
$endgroup$
– Robert Z
Jan 25 at 17:47